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Abstract

Working memory (WM) is a key component of human memory and cognition. Computational models have
been used to study the underlying neural mechanisms, but neglected the important role of short-term memory
(STM) and long-term memory (LTM) interactions for WM. Here, we investigate these using a novel multiarea
spiking neural network model of prefrontal cortex (PFC) and two parietotemporal cortical areas based on mac-
aque data. We propose a WM indexing theory that explains how PFC could associate, maintain, and update
multimodal LTM representations. Our simulations demonstrate how simultaneous, brief multimodal memory
cues could build a temporary joint memory representation as an “index” in PFC by means of fast Hebbian syn-
aptic plasticity. This index can then reactivate spontaneously and thereby also the associated LTM representa-
tions. Cueing one LTM item rapidly pattern completes the associated uncued item via PFC. The PFC–STM
network updates flexibly as new stimuli arrive, thereby gradually overwriting older representations.

Key words: computational model; long-term memory; short-term memory; spiking neural network; synaptic
plasticity; working memory

Significance Statement

Most, if not all, computational working memory (WM) models have focused on short-term memory (STM) as-
pects. However, from the cognitive perspective the interaction of STM with long-term memory (LTM) bears
particular relevance since the WM-activated LTM representations are considered central to flexible cogni-
tion. Here we present a large-scale biologically detailed spiking neural network model accounting for three
connected cortical areas to study dynamic STM–LTM interactions that reflect the underlying theoretical
concept of memory indexing, adapted to support distributed cortical WM. Our cortex model is constrained
by relevant experimental data about cortical neurons, synapses, modularity, and connectivity. It demon-
strates encoding, maintenance, and flexible updating of multiple items in WM as no single model has done
before. It thereby bridges microscopic synaptic effects with macroscopic memory dynamics, and reprodu-
ces several key neural phenomena reported in WM experiments.

Introduction
By working memory (WM) we typically understand a

flexible but volatile kind of memory capable of holding a
small number of items over short time spans, allowing us
to act beyond the immediate here and now. WM is thus a
key component in cognition and is often affected early on

in neurologic and psychiatric conditions (e.g., Alzheimer’s
disease and schizophrenia; Slifstein et al., 2015).
Although prefrontal cortex (PFC) has consistently been
implicated as a key neural substrate for WM in humans
and nonhuman primates (Fuster, 2009; D’Esposito and
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Postle, 2015), there is accumulated evidence for the in-
volvement of other cortical regions, particularly parieto-
temporal networks associated with long-term memory
(LTM) correlates. Consequently, there is growing under-
standing that WM function emerges from the interactions
between dynamically coupled short-term memory (STM)
and LTM systems (Eriksson et al., 2015; Sreenivasan and
D’Esposito, 2019), which enable activation or the “bring-
ing online” of a small set of task-relevant LTM representa-
tions (Eriksson et al., 2015). This prominent effect is
envisaged to underlie complex cognitive phenomena,
which are reported in experiments on humans as well as
animals. Nevertheless, since there is limited availability of
multiarea mesoscopic recordings of neural activity during
WM, the neural mechanisms involved remain elusive.
Furthermore, computational models of WM have so far fo-
cused solely on its short-term memory aspects, explained
either by means of persistent activity (Funahashi et al.,
1989; Goldman-Rakic, 1995; Camperi and Wang, 1998;
Compte et al., 2000) or, more recently, fast synaptic plas-
ticity (Mongillo et al., 2008; Lundqvist et al., 2011; Fiebig
and Lansner, 2017), and there are no detailed hypotheses
about neural underpinnings of the operational STM–LTM
interplay in the service of WM.
To address this gap and draw attention to the wider

cognitive perspective of WM accounting for more than
STM correlates in PFC, we present a large-scale multiarea
spiking neural network model of WM and focus on investi-
gating the neural mechanisms behind the fundamental
STM–LTM interactions critical to WM function. Our model
comprises a subsampled PFC network model of STM that
is reciprocally connected with two LTM component net-
works representing different sensory modalities (e.g., vis-
ual and auditory) in parietotemporal cortical areas. This
new model exploits the architecture of a recent PFC-de-
pendent STM model of human word-list learning (Fiebig
and Lansner, 2017), shown to reproduce a range of pat-
terns of mesoscopic neural activity observed in WM ex-
periments. It uses the same fast Hebbian plasticity as a
key neural mechanism, intrinsically within PFC but also in
PFC backprojections that target parietotemporal LTM
stores. The core idea of our theory rests on the concept of
cell assemblies formed in the PFC, as STM correlates, by
means of fast Hebbian plasticity that serve as “indices”
linking LTM representations. The associative plasticity in
this functional context has to be induced and expressed
on a timescale of a few hundred milliseconds. Recent ex-
periments have demonstrated the existence of fast forms
of Hebbian synaptic plasticity (e.g., short-term potentia-
tion or labile LTP; Erickson et al., 2010; Park et al., 2014;
Pradier et al., 2018), which lends credibility to this type of
WMmechanism.

The proposed concept of distributed WM resting on the
dynamical STM–LTM interactions, mediated by fast syn-
aptic plasticity, draws inspiration from the hippocampal
memory indexing theory (Teyler and DiScenna, 1986),
originally proposed to account for the role of hippocam-
pus in storing episodic memories (Teyler and Rudy, 2007).
Binding and indexing of neural representations have been
a common recurring theme in memory research, in partic-
ular in relation to the role of hippocampus and surround-
ing structures (Squire, 1992; O’Reilly and Frank, 2006;
Teyler and Rudy, 2007). We therefore adapt this theoreti-
cal notion and formulate a cortical indexing theory of WM,
thereby reflecting a more general computational principle
of indexing that supports multiarea memory phenomena.
Our main novel contribution here is to show that a neurobio-
logically constrained large-scale spiking neural network
model of interacting cortical areas via biologically realistic
sparse connectivity can function as a robust and flexible
multi-item and cross-modalWM. This includes its important
role of bringing relevant LTM representations temporarily
online by means of “indexing,” and thus to computationally
validate the proposed concept of distributed WM. In addi-
tion, the model replicates many experimentally observed ef-
fects in terms of oscillations, coherence, and latency within
and between cortical regions, and offers new macroscopic
predictions about large-scale internetwork dynamics as a
neural correlate of WM operations. Interestingly, it can also
explain the so far poorly understood cognitive phenomenon
of variable binding or object–name association, which is
one key ingredient in human reasoning and planning (Cer
and O’Reily, 2012; Pinkas et al., 2013; van der Velde and de
Kamps, 2015).

Materials and Methods
Neuronmodel
We use an integrate-and-fire point neuron model with

spike–frequency adaptation (Brette and Gerstner, 2005),
which was modified by Tully et al. (2014) for compatibility
with a custom-made Bayesian Confidence Propagation
Neural Network (BCPNN) synapse model in NEST (see
Simulation environment) through the addition of the intrin-
sic excitability current Ib j

. The model was simplified by
excluding the subthreshold adaptation dynamics. Membrane
potential (Vm) and adaptation current are described by the fol-
lowing equations:

�Cm
dvm
dt

¼ �gLðVm � ELÞ1gLDTe
vm�vt
DT � IwðtÞ

� ItotðtÞ1 Ib j
1 Iext (1)

dIwðtÞ
dt

¼ �lwðtÞ
t Iw

1bd ðt� tspÞ: (2)

The membrane voltage changes through incoming cur-
rents over the membrane capacitance (Cm). A leak rever-
sal potential (EL) drives a leak current through the
conductance (gL), and an upstroke slope factor (DT) deter-
mines the sharpness of the spike threshold (Vt). Spikes
are followed by a reset of membrane potential to Vr. Each
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spike increments the adaptation current by b, which de-
cays with time constant t Iw . Simulated basket cells fea-
ture neither the intrinsic excitability current Ib j

nor this
spike-triggered adaptation.
In addition to external input Iext (see Stimulation proto-

col), neurons receive a number of different synaptic cur-
rents from their presynaptic neurons in the network
(AMPA, NMDA, and GABA), which are summed at the
membrane accordingly:

ItotjðtÞ ¼
X
syn

X
i

gsyn
ij ðtÞðVmj � Esym

ij Þ

¼ IAMPA
j ðtÞ1 INMDA

j ðtÞ1 IGABA
j ðtÞ: (3)

Synapse model
Excitatory AMPA and NMDA synapses have a reversal

potential EAMPA = ENMDA, while inhibitory synapses drive
the membrane potential toward EGABA. Every presynaptic
input spike (at tisp with transmission delay tij) evokes a
transient synaptic current through a change in synaptic
conductance that follows an exponential decay with time
constants tsyn depending on the synapse type (tAMPA �
tNMBA), as follows:

gsyn
ij ðtÞ ¼ xdepij ðtÞwsyn

ij e�t�ti�t ij
tsyn Hðt� tisp � tijÞ: (4)

H(·) is the Heaviside step function. wsyn
ij is the peak ampli-

tude of the conductance transient, learned by the spike-
based BCPNN learning rule (next section). Plastic synap-
ses are also subject to synaptic depression (vesicle deple-
tion) according to the Tsodyks–Markram formalism
(Tsodyks and Markram, 1997), modeling the transmis-
sion-dependent depletion of available synaptic resources
xdepij by a utilization factor U, and a depression/reuptake
time constant t rec, as follows:

dxdepij

dt
¼ 1� xdepij

t rec
� Uxdepij

X
sp

d ðt� tisp � tijÞ: (5)

Spike-based BCPNN learning rule
Plastic AMPA and NMDA synapses are modeled to

mimic NMDA-dependent Hebbian short-term potentiation
(Erickson et al., 2010) with a spike-based version of the
BCPNN learning rule (Wahlgren and Lansner, 2001; Tully
et al., 2014). For a full derivation from Bayes rule, deeper
biological motivation, and proof of concept, see Tully et
al. (2014) and an earlier STM model implementation by
Fiebig and Lansner (2017).
Briefly, the BCPNN learning rule makes use of biophysi-

cally plausible local traces to estimate normalized presynap-
tic and postsynaptic firing rates, as well as coactivation,
which can be combined to implement Bayesian inference
because connection strengths and neural unit activations
have a statistical interpretation (Sandberg et al., 2002;
Fiebig and Lansner, 2014; Tully et al., 2014). Crucial param-
eters include the synaptic activation trace Z, which is com-
puted from spike trains via presynaptic and postsynaptic

time constants t synzi ; t synzj , which are the same here but differ
between AMPA and NMDA synapses, as follows:

tAMPA
zi

¼ tAMPA
zj

¼ 5ms; tNMDA
zi

¼ tNMDA
zj

¼ 100ms: (6)

The larger NMDA time constant reflects the slower closing
dynamics of NMDA receptor-gated channels. All excita-
tory connections are drawn as AMPA and NMDA pairs,
such that they feature both components. Further filtering
of the Z traces leads to rapidly expressing memory traces
(referred to as P-traces) that estimate activation and co-
activation as follows:

tp
dPi

dt
¼ kðZi � PiÞ; tp

dPj

dt
¼ kðZj � PjÞ;

tp
dPij

dt
¼ kðzizj � PijÞ: (7)

These traces constitute memory itself and decay in a pal-
impsest fashion. Short-term potentiation decay is known
to take place on timescales that are highly variable and ac-
tivity dependent (Volianskis et al., 2015; see Discussion,
The case for Hebbian plasticity).
We make use of the learning rule parameter k (Eq. 7),

which may reflect the action of endogenous neuromodu-
lators [e.g., dopamine (DA) acting on D1 receptors
(D1Rs)] that signal relevance and thus modulate learning
efficacy). It can be dynamically modulated to switch off
learning to fixate the network or temporarily increase
plasticity (kencoding, knormal; Table 1). In particular, we
trigger a transient increase of plasticity concurrent with
external stimulation.
Tully et al. (2014) showed that Bayesian inference can

be recast and implemented in a network using the spike-
based BCPNN learning rule. Prior activation levels are
realized as an intrinsic excitability of each postsynaptic
neuron, which is derived from the postsynaptic firing rate
estimate pj and implemented in the NEST neural simulator
(Gewaltig and Diesmann, 2007) as an individual neural
current Ib j

with scaling constant bgain:

Ib j
¼ bgainlogðPjÞ: (8)

Ib j
is thus an activity-dependent intrinsic membrane cur-

rent to the neurons, similar to the A-type potassium chan-
nel (Hoffman et al., 1997) or TRP channel (Petersson et
al., 2011). Synaptic weights are modeled as peak ampli-
tudes of the conductance transient (Eq. 4) and determined
from the logarithmic BCPNN weight, as derived from the
P-traces with a synaptic scaling constant wsyn

gain, as
follows:

wsyn
ij ¼ wsyn

gainlog
pij

pipj
: (9)

In this model, AMPA and NMDA synapses make use of
w

AMPA

gain and wNMDA
gain , respectively. The logarithm in Equations

8 and 9 is motivated by the Bayesian underpinnings of the
learning rule and means that synaptic weights wsyn

ij multi-
plex both the learning of excitatory and disynaptic inhibi-
tory interaction. The positive weight component is here
interpreted as the conductance of a monosynaptic
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excitatory pyramidal to pyramidal synapse [Fig. 1, plastic
connection to the coactivated minicolumn (MC)], while the
negative component (Fig. 1, plastic connection to the
competing MC) is interpreted as disynaptic via a dendritic
targeting and vertically projecting inhibitory interneuron
like a double bouquet and/or bipolar cell (Tucker and
Katz, 2003; Kapfer et al., 2007; Ren et al., 2007;
Silberberg and Markram, 2007). Accordingly, BCPNN
connections with a negative weight use a GABAergic re-
versal potential instead, as in previously published mod-
els of this kind (Tully et al., 2014, 2016; Fiebig and
Lansner, 2017). Model networks with negative synaptic
weights have been shown to be functionally equivalent to
those with both excitatory and inhibitory neurons with

only positive weights (Parisien et al., 2008). In the context
of this particular model microcircuit and learning rule, this
was explicitly and conclusively demonstrated by the addi-
tion of double bouquet cells (Chrysanthidis et al., 2019).
Code for the NEST implementation of the BCPNN syn-

apse is openly available (see Code accessibility).

Axonal conduction delays
We compute axonal delays tij between presynaptic neu-

ron i and postsynaptic neuron j, based on a constant con-
duction velocity V and the Euclidean distance between
respective columns. Conduction delays were randomly
drawn from a normal distribution with mean according to
the connection distance divided by conduction speed

Figure 1. Local columnar connectivity within STM and LTM. Connection probabilities are given by the percentages; further details
are in Tables 1, 2, and 3. The strength of plastic connections develops according to the synaptic learning rule described in the
spike-based BCPNN learning rule. Initial weights are low and distributed by a noise-based initialization procedure (see
Stimulation protocol). However, dashed connections are not plastic in LTM (besides the synaptic depression of Eq. 5), but already
encode memory patterns previously learned through an LTP protocol, and loaded before the simulation using receptor-specific
weights found in Table 2.

Table 1: Neurons, synapses, and plasticity

Adaptation current b 86 pA Depression time constant t rec 500 ms BCPNN
AMPA gain

wAMPA
gain 3.93 nS

Adaptation time constant t Iw 500 ms AMPA synaptic time constant tAMPA 5 ms BCPNN
NMDA gain

wNMDA
gain 0.21 nS

Membrane capacity Cm 280 pF NMDA synaptic time constant tNMDA 100 ms BCPNN bias current gain b gain 90 pA
Leak reversal potential EL �70 mV GABA synaptic time constant tGABA 5 ms BCPNN lowest rate fmin 0.2 Hz
Leak conductance gL 14 pS AMPA reversal potential EAMPA 0 mV BCPNN highest rate fmax 20 Hz
Upstroke slope factor DT 3 mV NMDA reversal potential ENMDA 0 mV BCPNN lowest probability « 0.01
Spike threshold Vt �55 mV GABA reversal potential EGABA �75 mV BCPNN Spike event duration Dt 1 ms
Spike reset potential Vr �80 mV Dopaminergic modulation kencoding 6.0 P-trace time constant tp 5 s
Utilization factor U 0.33 Regular plasticity knormal 1.0
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and with a relative SD of 15% of the mean in order to ac-
count for individual arborization differences and varying
conduction speeds as a result of axonal thickness/myeli-
nation. Further, we add a minimal conduction delay tsynmin of
1.5ms to reflect not directly modeled delays, such as dif-
fusion of transmitter over the synaptic cleft, dendritic
branching, thickness of the cortical sheet, and the spatial
extent of columns, as follows:

tij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ21ðyi � yjÞ2

q

V
1 tsynmnms tij ;Nðtij ; :15tijÞ:

(10)

STM network architecture
The model organizes cells in the three simulated corti-

cal areas into grids of nested hypercolumns (HCs) and
MCs, sometimes referred to as macro columns, and
“functional columns,” respectively. The STM network is
simulated with nSTMHC ¼ 25 HCs spread out on a grid with
spatial extent of 17 � 17 mm. This spatially distributed
network of columns has sizable conduction delays due
to the distance between columns and can be interpreted
as a spatially distributed subsampling of columns from
the extent of dorsolateral PFC (e.g., BA 46 and 9/46,
which also have a combined spatial extent of ;289 mm2

in macaque).
Each of the nonoverlapping HCs has a diameter of

;640mm, comparable to estimates of cortical column
size (Mountcastle, 1997), contains 48 basket cells, and its
pyramidal cell population has been divided into 12 MCs.
This constitutes another subsampling from the;100 MCs
per HC when mapping the model to biological cortex. We
simulate 20 pyramidal neurons per MC to represent ap-
proximately the layer 2 population of an MC, 5 cells for

layer 3A, 5 cells for layer 3B, and another 30 pyramidal
cells for layer 4, as macaque BA 46 and 9/46 have a well
developed granular layer (Petrides and Pandya, 1999).
The STMmodel thus contains;18,000 simulated pyrami-
dal cells in four layers (although layers 2, 3A, and 3B are
often treated as one layer 2/3).

STM network connectivity
The most relevant connectivity parameters are found in

Tables 1, 2, and 3. Pyramidal cells project laterally to bas-
ket cells within their own HC via AMPA-mediated excita-
tory projections with a connection probability of pp–B (i.e.,
connections are randomly drawn without duplicates until
the target fraction of all possible pre–post connections
exist). In turn, they receive GABAergic feedback (FB) inhi-
bition from basket cells (pB–p) that connect via static inhib-
itory synapses rather than plastic BCPNN synapses. This
strong loop implements a competitive soft WTA (winner-
take-all) subnetwork within each HC (Douglas and Martin,
2004). Local basket cells fire in rapid bursts, and induce
alpha/beta oscillations in the absence of attractor activity
and gamma, when attractors are present and active.
Pyramidal cells in layer 2/3 form connections both with-

in and across HCs at connection probability pL23e-L23e.
These projections are implemented with plastic synapses
and contain both AMPA and NMDA components, as ex-
plained in the subsection Spike-based BCPNN learning
rule. Connections across columns and areas may feature
sizable conduction delays due to the implied spatial dis-
tance between them (Table 1).
Pyramidal cells in layer 4 project to pyramidal cells of

layer 2/3, targeting 25% of cells within their respective
MC only. Experimental characterization of excitatory con-
nections from layer 4 to layer 2/3 pyramidal cells have
confirmed similarly high fine-scale specificity in rodent
cortex (Yoshimura and Callaway, 2005) and, in turn, full-

Table 2: Network size, conduction delay, stimulation, and LTM preload BCPNN weights

STM patch size 17 � 17 mm Initialization input rate layer 2/3 rL23bg�low 550 Hz

Simulated HCs nSTMHC 25 Background activity rate layer 2/3 rL23bg 625 Hz

Simulated MC per HC nSTMMC 12 Background activity rate layer 4 r24bg 300 Hz

LTM patch size 25 � 25 mm High Background activity rate layer
2/3 (e.g., STM maintenance)

rL23bg�high 950 Hz

Simulated HCs nLTMHC 16

Simulated MC per HC nLTMMC 9 Background conductance gbg 61.5 nS

Axonal conduction speed V
2
m
s

Minimal conduction delay tsynmin 1.5 ms Cue stimulus duration tcue 50 ms

STM–LTM distance dSTM-LTM 40 mm Stimulation rate rcue 650 Hz

Hypercolumn diameter dHC 0.64 mm Cue stimulus conductance gcue 11.5 nS

Layer 2 pyramidal per MC nPYR�L2
MC 20 LTM intra-HC–intra-MC weight wIntraHC

IntraMC 3.36 wsyn
gain

Layer 3A pyramidal per MC nPYR�L3A
MC 5 LTM intra-HC–inter-MC weight wIntraHC

InterMC �4.82 wsyn
gain

Layer 3B pyramidal per MC nPYR�L3B
MC 5

Layer 4 pyramidal per MC nPYR�L4
MC 30 LTM inter-HC–coactive MC weight wInterHC

CoactiveMC 3.08 wsyn
gain

Basket cells per MC nbasketMC 4 LTM inter-HC–competing MC weight wInter HC
Competin gMC �4.28 wsyn

gain

Layer 4 not simulated in LTM.
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scale cortical simulation models without functional columns
have found it necessary to specifically strengthen these con-
nections to achieve defensible firing rates (Potjans and
Diesmann, 2014).
In summary, the STM model thus features a total of

16.2 million plastic AMPA- and NMDA-mediated connec-
tions between its 18,000 simulated pyramidal cells, as
well as 67,500 static connections from 9000 layer four
pyramidals to layer 2/3 targets within their respective MC,
and 1.2 million static connections to and from 1200 simu-
lated basket cells.

LTM network
We simulate two structurally identical LTM networks,

referred to as LTMa and LTMb. LTM networks may be in-
terpreted as a spatially distributed subsampling of col-
umns from areas of the parietotemporal cortex commonly
associated with modal LTM stores. For example, inferior
temporal cortex (ITC) is often referred to as the store-
house of visual LTM (Miyashita, 1993). Two such LTM
areas are indicated in Figure 2.
We simulate nLTMHC ¼ 16 HCs in each area and 9 MCs per

HC (Tables 1, 2, 3, for further details). Both LTM networks
are structurally very similar to the previously described
STM, yet they do not feature plasticity among their own
cells, beyond short-term dynamics in the form of synaptic
depression. Unlike STM, LTM areas also do not feature an
input layer 4, but are instead stimulated directly to cue the
activation of previously learned long-term memories (see
Stimulation protocol). Various previous models with iden-
tical architecture have demonstrated how attractors can
be learned via plastic BCPNN synapses (Lansner et al.,
2013; Tully et al., 2014, 2016; Fiebig and Lansner, 2017).
We load each LTM network with nine orthogonal attrac-
tors [see Fig. 4B, 10 in the example (which features two

sets of five memories each)]. Each memory pattern con-
sists of 16 active MCs, distributed across the 16 HCs of
the network. We load in BCPNN weights from a previously
trained network (Table 2), but thereafter set k = 0 to deac-
tivate plasticity of recurrent connections in LTM stores.
In summary, the two LTM models thus feature a total of

7.46 million connections between 8640 pyramidal cells,
as well as 435,456 static connections to and from 1152
basket cells.

Interarea connectivity
In this model, we focus on layers 2/3, as its high degree of

recurrent connectivity (Thomson et al., 2002; Yoshimura
and Callaway, 2005) supports attractor function. The high
fine-scale specificity of dense stellate cell (Yoshimura et al.,
2005) and double-bouquet cell inputs (DeFelipe et al., 2006;
Chrysanthidis et al., 2019) enable strongly coding subpopu-
lations in the superior layers of functional columns. This fits
with the general observation that layers 2/3 are more input
selective than the lower layers (Crochet and Petersen, 2009;
Sakata and Harris, 2009) and thus of more immediate con-
cern to our computational model.
The recent characterization of supragranular feedfor-

ward (FF) and FB projections (from large cells in layer 3B
and 3A, respectively), between association cortices and
at short and medium cortical distances (Markov et al.,
2014), allows for the construction of a basic cortical hier-
archy without explicit representation of infragranular
layers (and its long-range FB projections from large cells
in layer 5 and 6). This is not to say that nothing would be
gained by explicitly modeling infragranular layers, but it
would go beyond the scope of this model.
Accordingly, our model implements supragranular FF

and FB pathways between cortical areas that are at a me-
dium distance in the cortical hierarchy. The approximate

Table 3: Projections

Scope Source Target Type Symbol Value
Cortical area Pyramidal Basket Probability pP-B 0.7

Pyramidal Basket Conductance (static) gP-B 13.5 nS
Basket Pyramidal Probability pB-P 0.7
Basket Pyramidal Conductance (static) gB-P �20 nS

L23e L23e Probability pL23e-L23e 0.2

L23e L23e AMPA gain (BCPNN) wAMPA
gain 3.93nS

L23e L23e NMDA gain (BCPNN) wNMDA
gain 0.21nS

L4e L23e Probability pL4e-L23e 0.25

L4e L23e Conductance (static) gL4e-L23e 25 nS

Feed forward LTM L3Ae STM MC Probability pFF
L3Ae�MC 0.0015

LTM L3Ae STM MC Branching factor bFF
L3Ae�MC 0.25

LTM L3Ae STM L23e Conductance (static) gFF
L3Ae�L23e 67.2 nS

LTM L3Ae STM L4e Conductance (static) gFF
L3Ae�L4e 67.2 nS

Feedback STM PYR LTM PYR Probability pFB
P�P 0.0066

STM L3Be LTM HC Branching factor bFB
L3Be�HC 0.25

STM L3Be LTM L23e AMPA gain (BCPNN) wAMPA
FB 7.07 nS

STM L3Be LTM L23e NMDA gain (BCPNN) wNMDA
FB 0.4 nS

Research Article: New Research 6 of 22

March/April 2020, 7(2) ENEURO.0374-19.2020 eNeuro.org



cortical distance between ITC and dlPFC in macaque is
;40 mm and with an axonal conductance speed of 2 m/s,
distributed conduction delays in our model (Eq. 10) aver-
age just .20ms between these areas (Girard et al., 2001;
Thorpe and Fabre-Thorpe, 2001; Caminiti et al., 2013).
In the forward path, layer 3B cells in LTM project toward

STM (Fig. 2). We do not draw these connections one by
one, but as branching axons targeting 25% of the pyrami-
dal cells in a randomly chosen MC (the chance of any
layer 3B cell to target any MC in STM is only 0.15%). The
resulting split between targets in layer 2/3 and 4 is typical
for FF connections at medium distances in the cortical hi-
erarchy (Markov et al., 2014) and has important functional
implications for the model (LTM-to-STM forward dynam-
ics). We also branch off some inhibitory corticocortical
connections as follows: for every excitatory connection
within the selected targeted MC, an inhibitory connection
is created from the same pyramidal layer 3B source cell
onto a randomly selected cell outside the targeted MC,
but inside the local HC. This way of drawing random for-
ward-projections retains a degree of functional specificity
due to its spatial clustering and yields patchy sparse for-
ward-projections as observed in the cortex (Houzel et al.,

1994; Voges et al., 2010), with a resulting interarea con-
nection probability of only 0.0125% (648 axonal projec-
tions from L3B cells to STM layers 2/3 and 4 results in
;20,000 total connections after branching, as described
above.
In the FB path, we draw sparse plastic connections

from layer 3A cells in STM to layer 2/3 cells in LTM:
branching axons target 25% of the pyramidal cells in a
randomly chosen HC in LTM, simulating a degree of axo-
nal branching found in the literature (Zufferey et al., 1999).
Using this method, we obtain biologically plausible sparse
and structured FB projections with an interarea connec-
tion probability of 0.66%, which, unlike the forward path-
way, do not have any built-in MC specificity but may
develop such through activity-dependent plasticity. More
parameters on corticocortical projections can be found in
Table 3. On average, each LTM pyramidal cell receives
;120 corticocortical connections from STM. Because
;5% of STM cells fire together during memory reactiva-
tion (see Results), this means that a mere 6 active synap-
ses per target cell are sufficient for driving (and thus
maintaining) LTM activity from STM (there are 96 active
synapses from coactive pyramidal cells in LTM).

Figure 2. Schematic of modeled connectivity within and across representative STM and LTM areas in macaque. STM features 25
HCs, whereas LTMa and LTMb both contain 16 simulated HCs. Each network spans several hundred square millimeters, and the si-
mulated columns constitute a spatially distributed subsample of biological cortex, defined by conduction delays. Pyramidal cells in
the simulated supragranular layers form connections both within and across columns. STM features an input layer 4 that shapes the
input response of cortical columns, whereas LTM is instead stimulated directly to cue the activation of previously learned long-term
memories. Additional corticocortical connections (feedforward in brown, feedback in dashed blue) are sparse (,1% connection
probability) and implemented with terminal clusters (rightmost panels) and specific laminar connection profiles (bottom left). The
connection schematic illustrates laminar connections realizing a direct supragranular forward-projection, as well as a common
supragranular backprojection. Layer 2/3 recurrent connections in STM (dashed green) and corticocortical backprojections (dashed
blue) feature fast Hebbian plasticity. For an in-depth model description, including the columnar microcircuits, please refer to
Materials and Methods and Figure 1.
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Notably LTMa and LTMb have no direct pathways con-
necting them in our model since we assume that the use
of previously not associated stimuli in our simulated multi-
modal tasks and further, that plasticity of biological con-
nections between them are likely too slow (LTP timescale)
to make a difference in WM dynamics. This arrangement
also guarantees that any binding of long-term memories
across LTM areas must be the result of interaction via
STM instead. Overall in our model, corticocortical con-
nectivity is very sparse,,1% on a cell-to-cell basis.

Stimulation protocol
The term Iext in Equation 1 subsumes specific and un-

specific external inputs. To simulate unspecific input from
nonsimulated columns, and other areas, pyramidal cells
are continually stimulated with a zero mean noise back-
ground throughout the simulation. In each layer, two inde-
pendent Poisson sources generate spikes at rate rlayerbg
and connect onto all pyramidal neurons in that layer, via
nondepressing conductances 6gbg (Table 2). Before
each simulation, we distribute the initial values of all
plastic weights by a process of learning from 1.5 s low,
unstructured background activity (Table 2; rL23bg�low). To
cue the activation of a specific memory pattern (i.e., at-
tractor), we excite LTM pyramidal cells belonging to a
memory patterns component MC with an additional exci-
tatory Poisson spike train (rate, rcue, length, tcue; con-
ductance, gcue). As LTM patterns are strongly encoded
in each LTM, a brief 50ms stimulus is usually sufficient
to activate any given memory.

Synthetic field potentials and spectral analysis
We estimate local field potentials (LFPs) by calculating

a temporal derivative of the average low-pass filtered (cut-
off frequency at 250Hz) potential for all pyramidal cells in
local populations at every time step, similarly to the ap-
proach adopted by Ursino and La Cara (2006). Although
LFP is more directly linked to the synaptic activity
(Logothetis, 2003), the averaged membrane potentials
have been reported to be correlated with LFPs (Okun et
al., 2010). In particular, low pass-filtered components of
synaptic currents reflected in differentiated membrane
potentials appear to carry the portion of the power spec-
tral content of extracellular potentials that is relevant to
our key findings (Lindén et al., 2010). As regards the
phase response of estimated extracellular potentials, the
delays of different frequency components are spatially
dependent (Lindén et al., 2010). However, irrespective of
the LFP synthesis, the phase-related phenomena re-
ported in this study remain qualitatively unaffected since
they hinge on relative rather than absolute phase values.
Most spectral analyses have been conducted on the

synthesized field potentials with the exception of popula-
tion firing rates, shown in Figure 3, A and B. Spectral infor-
mation is extracted with a multitaper approach using a
family of orthogonal tapers produced by Slepian functions
(Slepian, 1978; Thomson, 1982), with frequency-depend-
ent window lengths corresponding to five to eight oscilla-
tory cycles and frequency smoothing corresponding to

0.3–0.4 of the central frequency, which was sampled with
the resolution of 1Hz (this configuration implies that two
to three tapers are usually used). To obtain the spectral
density, spectrotemporal content is averaged within a
specific time interval.
The coherence for a pair of synthesized field potentials

at the spatial resolution corresponding to a hypercolumn
was calculated using the multitaper auto-spectral and
cross-spectral estimates. The complex value of coher-
ence (Carter, 1987) was evaluated first based on the
spectral components averaged within 0.5 s windows.
Next, its magnitude was extracted to produce the time-
windowed estimate of the coherence amplitude. In addi-
tion, phase-locking statistics were estimated to examine
synchrony without the interference of amplitude correla-
tions (Lachaux et al., 1999; Palva et al., 2005). In particu-
lar, the phase-locking value (PLV) between two signals
with instantaneous phases U1(t) and U2(t) was evaluated
within a time window of size N=0.5 s as follows:

PLV ¼ 1
N
jXN
i¼ 1

exp
�
j
�
U1ðtiÞ � U2ðtiÞ

��j:
The instantaneous phase of the signals was estimated
from their analytic signal representation obtained using a
Hilbert transform. Before the transform was applied, the
signals were narrow band filtered with low-time domain
spread, finite-impulse response filters (in the forward and
reverse directions to avoid any phase distortions). The
analysis was performed mainly for gamma-range oscilla-
tions. A continuous PLV estimate was obtained with a
sliding window approach, and the average along with SE
were calculated typically over 25 trials.

Spike train analysis andmemory activity tracking
We track memory activity in time by analyzing the popu-

lation firing rate of pattern-specific and network-wide spik-
ing activity usually using an exponential moving average
filter time constant of 20ms. We do not use an otherwise
common low-pass filter with symmetrical window, because
we are particularly interested in characterizing activation
onsets and onset delays. As activations are characterized
by sizable gamma-like bursts, a simple threshold detector
can extract candidate activation events and decode the
activated memory. This is trivial in LTM due to the known
nature of its patterns. In STM, we decode the stimulus
specificity of each cell individually by finding the maximum
correlation between input pattern and the untrained STM
spiking response in the 320ms following cue onset (which
is the stimulation interval during the plasticity-modulated
stimulation period; Fig. 3D) following the pattern cue to
LTM. Thereafter, we can filter the population response of
cells in STM with the same selectivity on that basis to ob-
tain a more robust readout. We validate the specificity by
means of cross-correlations, which reveal that the pattern-
specific populations are rather orthogonal according to the
covariance matrix (off-diagonal magnitude,,0.1). In all
three networks, we measure the onset and offset of pattern
activity by thresholding each individual activation at half of
its population peak firing rate. In LTM, we further check
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pattern completion by analyzing component MC activation.
Whenever targeted stimuli are used, we analyze peristimu-
lus activation traces. When activation onsets are less pre-
dictable, such as during free STM-paced maintenance, we
extract activation candidates via a threshold detector
trained at the 50th percentile of the cumulative distribution
of the population firing rate signal.

Code accessibility
We used the NEST simulator (Gewaltig and Diesmann,

2007) version 2.2 for our simulations (RRID:SCR_002963),
running on a Cray XC-40 Supercomputer of the PDC Centre
for High Performance Computing. The custom-built spiking
neural network implementation of the BCPNN learning rule
for MPI (message passing interface) parallelized NEST is

Figure 3. Basic network behavior in spike rasters and population firing rates. Activity in the untrained network under strong back-
ground input. A, Subsampled spike raster of STM (top) and LTM (bottom) layer 2/3 activity. HCs are separated by gray horizontal
lines. Global oscillations in the alpha range (10–13Hz) characterize this activity state in both STM (top) and LTM (bottom) in the ab-
sence of attractors. Inset, Power spectral density of LFP of each network. B, Cued LTM memory activation express as fast oscilla-
tion bursts of selective cells (50–80Hz), organized into a theta-like envelope (4–8Hz), see also power spectrum inset. The gamma
band is broad due to the varying lengths of the underlying cycles (i.e., noticeably increasing over the short memory activation pe-
riod). The underlying spike raster shows layer 2/3 activity of the activated MC in each HC, revealing spatial synchronization. The
brief stimulus is a memory-specific cue. C, LTM-to-STM forward dynamics as shown in population firing rates of STM and LTM ac-
tivity following LTM activation induced by a 50ms targeted stimulus at time 0. LTM-driven activations of STM are characterized by
an FF delay. Shadows indicate the SD of 100 peristimulus activations in LTM (blue) and STM (orange) with and without plasticity en-
abled (dashed, dark orange). Horizontal bars indicate the activation half-width (Materials and Methods). Onset is denoted by vertical
dashed lines. The stimulation of LTM and the activation of plasticity is denoted underneath. D, Subsampled spike raster of STM
(top) and LTM (middle) during forward activation of the untrained STM by five different LTM memory patterns, triggered via specific
memory cues in LTM at times marked by the vertical dashed lines. Bottom spike raster shows LTM layer 2/3 activity of one selective
MC per activated pattern (colors indicate different patterns). Top spike raster shows layer 2/3 activity of one HC in STM. STM spikes
are colored according to each cells dominant pattern selectivity (based on the memory pattern correlation of individual STM cell
spiking during initial pattern activation, see Materials and Methods, Spike train analysis and memory activity tracking). Bottom, The
five stimuli to LTM (colored boxes) and modulation of STM plasticity (black line). Extended Data Figure 3-1 shows basic network be-
havior in spike rasters and population firing rates under low-input feature fluctuations in membrane voltages and low-rate, asynchro-
nous spiking activity, while Extended Data Figure 3-2 shows network activity during plasticity-modulated stimulation with 20%
spatial extent, illustrating the impact of conductance delays on cortical dynamics (see Model robustness).
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freely available on github (https://github.com/Florian-Fiebig/
BCPNN-for-NEST222-MPI) and is included in the Extended
Data 1. Further, the model is also available on ModelDB
(https://modeldb.yale.edu/257610).

Model robustness
Our model incorporates a plethora of biological con-

straints, such as estimates of the extent and distance of
areas (e.g., STM patch size approximates macaque dlPFC
and is 40 mm from either LTM patch), laminar cell distribu-
tions (npYR�L2

MC , npYR�L3b
MC ,...), and hypercolumnar size. The

model also abides by various electrophysiological con-
straints, such as plausible EPSP, IPSP sizes, estimates on
laminar connection densities, laminar characterization of
cortical FF/FB pathways with remote patchy connectivity,
estimates on axonal conductance speeds, dendritic arbor
sizes (branching factors), commonly accepted synaptic
time constants for various receptor types, depression, ad-
aptation, and builds on top of established models, such as
the neuron model or the synaptic resource model.
References to many of these constraints can be found
throughout the Materials and Methods.
Because our model is quite complex and synthesizes

many different components and processes, it is beyond
the scope of this work to perform a detailed parameter
sensitivity analysis. However, from our extensive simula-
tions we conclude that it is robust and degrades grace-
fully. Almost all uncertain parameters can be varied
630% without breaking WM function. The model is dra-
matically subsampled, and scaling up would be possible.
This could be expected to further improve overall robust-
ness. Highly related modular cortical network models
have been studied extensively previously (Lundqvist et al.,
2010, 2011; Tully et al., 2013, 2014; Fiebig and Lansner,
2017). For example, the model sensitivity to important
short-term plasticity parameters affecting active mainte-
nance mechanisms and intermittent gamma bursts (e.g.,
neural adaptation and synaptic depression time constants)
were specifically explored in a single-network model (Fiebig
and Lansner, 2017; see Fig. 8).
In the following, we briefly address new aspects of

model sensitivity, previously unexplored, such as the
parameterization of corticocortical connectivity, spatial
scale (and associated conduction delays), as well as the
transient modulation of Hebbian plasticity during rapid
WM encoding.
In the FB pathway, a mere 0.6% connectivity is suffi-

cient to support LTM activation in maintenance and recall.
As rigorous testing (data not shown here) revealed, lower
connectivity degrades WM capacity, unless we increase
the total number of coactive STM cells by other means.
FF connectivity can be even lower (0.015% in this model)
because terminal clusters in STM are smaller and provide
more information contrast (corticocortical connectivity). In
both cases, our model uses very sparse connectivity, yet it
could be increased or decreased if single synaptic currents
were reduced/increased, respectively. Somewhat pecu-
liarly, we also found that we needed to increase the corti-
cocortical conductance of the backprojections (wsyn

FB ) by
the same factor of 1.8 (over the local conductance gain

wsyn
gain) as another highly detailed multiarea model of maca-

que visual cortex (Schmidt et al., 2018) to achieve function-
al WM at the stated long-distance connection probabilities.
There are upper and lower limits on conduction delays

in our model. When corticocortical conduction delays ex-
ceed 65ms (corresponding to 130 mm in distance), STM
FB can no longer activate the LTM network because
bursts desynchronize before they arrive. STM and LTM
could be adjacent, as we briefly mention at the end of the
Results section, but there is a minimum spatial scale for
each component network. The length of gamma bursts
decreases if we reduce the spatial extent (and thus the
connection delays between HCs) by 45%. At 20%, when
the largest inter-HC delays fall to ,5ms (Extended Data
Fig. 3–2), the spiking activity of activated memories col-
lapses into a single brief burst, which degrades learning
and effective information transmission both within and
across networks. Networks may be much smaller, how-
ever, if this is compensated by slower axonal conduct-
ance velocities (,2 mm/ms). Furthermore, we verified that
the relative temporal delay dither in Equation 10 can be
varied considerably (0–30%) without noticeable effects on
memory performance.
The Hebbian plasticity of the model can be modulated

via the parameter k (Eq. 7). While k is normally 1 (knormal,
a transient increase of k = kencoding; Table 1), it enables
rapid, one-shot encoding in STM (Fig. 3D). Halving or
doubling kencoding affects the overall working memory
performance of the model only slightly, as measured by
the number of items maintained during the delay period,
or the overall rate of gamma bursts (Extended Data Fig.
4–4). It is, however, not possible to maintain normal WM
operation without upregulating plasticity during encoding
(leaving kencoding = knormal), unless additional compensa-
tory changes are made to increase STM excitability, back-
ground excitation, or excitatory long-range connectivity.
The strong correlation between working memory load and
gamma-burst rate was previously discussed by Fiebig
and Lansner (2017) in the context of evidence from multi-
item WM recordings in macaque by Lundqvist et al.
(2016).

Results
Our model implements WM function arising from the in-

teractions of STM and LTM networks, which manifest as
multi-modal memory binding phenomena. To this end, we
simulate three cortical patches with significant biophysi-
cal detail: one STM and two LTM networks (LTMa, LTMb),
representing PFC and parietotemporal areas, respectively
(Fig. 2). The computational network model used here rep-
resents a detailed modular cortical microcircuit architec-
ture in line with previous models (Lundqvist et al., 2006,
2011; Tully et al., 2016). Like those models, the new
model can reproduce a wide range of mesoscopic and
macroscopic biological manifestations of cortical memory
function, including complex oscillatory dynamics and syn-
chronization effects (Silverstein and Lansner, 2011;
Lundqvist et al., 2011, 2013). The current model is built di-
rectly on a recent STM model of human word-list learning
(Fiebig and Lansner, 2017). We subdivided the
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associative cortical layer 2/3 network of that model into
layers 2, 3A, and 3B. Importantly, we also extended this
model with an input layer 4 and corticocortical connectiv-
ity to LTM stores in temporal cortical regions. This large,
multiarea network model synthesizes many different ana-
tomic and electrophysiological cortical data and produces
complex output dynamics. Here, we specifically focus on
the dynamics of memory specific subpopulations in the
interaction of STM and LTM networks.
We introduce the operation of the WM model in several

steps. First, we take a brief look at background activity
and active memory states in isolated cortical networks of
this kind to familiarize the reader with some of its dynami-
cal properties. Second, we describe the effect of memory

activation on STM with and without plasticity. Third, we
add the plastic backprojections from STM to LTM and
monitor the encoding and maintenance of several memo-
ries in the resulting STM–LTM loop. We track the evolution
of acquired cell assemblies with shared pattern selectivity
in STM and show their important role in WM maintenance
(called delay activity). We then demonstrate that the
emerging WM network system is capable of flexibly up-
dating the set of maintained memories. Finally, we simu-
late multimodal association and analyze its dynamical
correlates. We explore temporal characteristics of net-
work activations, the accompanying oscillatory behavior
of the synthesized field potentials, cross-cortical delays
as well as gamma-band coupling (coherence and phase

Figure 4. Encoding and feedback-driven reactivation of LTM. A, Firing rates of pattern-specific subpopulations in STM and LTM
during encoding and subsequent maintenance of five memories. Just as in the plasticity-modulated stimulation phase shown in
Figure 2D, five LTM memories are cued via targeted 50ms stimuli (shown underneath). Plasticity of STM and its backprojections is
again elevated sixfold during the initial memory activation. Thereafter, a strong noise drive to STM causes spontaneous activations
and plasticity induced consolidation of pattern-specific subpopulations in STM (lower plasticity, k = 1). Backprojections from STM
cell assemblies help reactivate associated LTM memories. B, Updating of WM. Rapid encoding and subsequent maintenance of a
second group of memories following an earlier set. The LTM spike raster shows layer 2/3 activity of one LTM HC (MCs separated by
gray horizontal lines), and the population firing rate of pattern-specific subpopulations across the whole LTM network is seen above.
Underneath, we denote stimuli to LTM and the modulation of plasticity, k , in STM and its backprojections. C, STM-to-LTM loop dy-
namics during a spontaneous reactivation event. STM-triggered activations of LTM memories are characterized by a feedback delay
and a second peak in STM after LTM activations. Horizontal bars at the bottom indicate activation half-width (Materials and Methods).
Onset is denoted by vertical dashed lines. Extended Data Figure 4-1 shows a more detailed spike raster of WM encoding and mainte-
nance. Extended Data Figures 4-2 and 4-3 show spike rates and a subsampled spike rasters during WM updating and maintenance.
Extended Data Figure 4-4 shows the sensitivity of delay activity to the plasticity modulation kv during encoding.
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synchronization) between LTM networks during WM en-
coding, maintenance, and cue-driven associative recall of
multimodal memories (LTMa–LTMb pairs of associated
memories).

Background activity and activatedmemory
At sufficiently high background input levels, the empty

network transitions from asynchronous spiking activity into
a state characterized by global oscillations of the popula-
tion firing rates in the alpha/beta range (Fig. 3A). This is
largely an effect of fast feedback inhibition from local bas-
ket cells (Fig. 1), high connection density within MCs, and
low latency local spike transmission (Lundqvist et al.,
2010). If the network has been trained with structured input
so as to encode memory (i.e., attractor states), background
noise, or a specific cue (Materials and Methods) can trigger
memory item reactivations accompanied by fast broad-
band oscillations modulated by an underlying slow oscilla-
tion in the lower theta range (;4–8Hz; Lundqvist et al.,
2011; Herman et al., 2013; Fig. 3B). The spiking activity of
memory activations (called attractors) is short lived due to
neural adaptation and synaptic depression. When unspe-
cific background excitation is very strong, this can result in
a random walk across stored memories (Lundqvist et al.,
2011; Fiebig and Lansner, 2017).

LTM-to-STM forward dynamics
We now consider cued activation of several memories

embedded in LTM. Each HC in LTM features selectively
coding MCs for given memory patterns that activate syn-
chronously in theta-like cycles each containing several
fast oscillation bursts (Fig. 3B). Five different LTMmemory
patterns are triggered by brief cues, accompanied by an
upregulation of STM plasticity (Fig. 3D, bottom). To indi-
cate the spatiotemporal structure of evoked activations in
STM, we also show a simultaneous subsampled STM
spike raster (Fig. 3D, top). STM activations are sparse
(;5%), but despite this, nearby cells (in the same MC)
often fire together. The distributed, patchy character of
the STM response to memory activations (Fig. 3D, top) is
shaped by branching forward-projections from LTM layer
3B cells, which tend to activate cells that are close by.
STM input layer four receives half of these corticocortical
connections and features very high fine-scale specificity
in its projections to layer 2/3 pyramidal neurons, which
furthers the recruitment of local clusters with shared se-
lectivity. STM cells initially fire less than those in LTM be-
cause the latter received a brief, but strong, activation cue
and have strong recurrent connections if they code for the
same embedded memory pattern. STM spikes in Figure
3D are colored according to the dominant memory pat-
tern selectivity of the cells (Materials and Methods, Spike
train analysis and memory activity tracking), which reveals
that STM activations are mostly nonoverlapping as well.
Unlike the organization of LTM with strictly nonoverlap-
ping memory patterns, MC activity in STM is not exclusive
to any given input pattern. Nevertheless, nearby STM
cells often develop similar pattern selectivity. On the other
hand, different stimulus patterns typically develop quite

nonoverlapping STM representations. This is due to the
randomness in LTM–STM connectivity, competition via
basket cell feedback inhibition, and short-term dynamics,
such as neural adaptation and synaptic depression. STM
neurons that have recently been activated by a strong,
bursting input from LTM are refractory and thus less
prone to spike again for some time thereafter (t rec and t Iw ;
Table 1), further reducing the likelihood of creating over-
lapping STM representations for different patterns.
Figure 3C shows peristimulus population firing rates of

both STM and LTM networks (the mean across 100 trials
with five triggeredmemories each). There is a bottom-up re-
sponse delay between stimulus onset at t=0 and LTM acti-
vation, as well as a substantial forward delay. Oscillatory
activity in STM is lower than in LTMmostly because the un-
trained STM lacks strong recurrent connections. It is thus
less excitable, and therefore does not trigger its basket
cells (the main drivers of fast oscillations in our model) as
quickly as in LTM. Fast oscillations in STM and the ampli-
tude of their theta-like envelope build up within a few sec-
onds as new cell assemblies become stronger [Fig. 4A (see
also Fig. 8)]. As seen in Figure 3B, bursts of coactivated
MCs in LTM can become asynchronous during activation.
Dispersed forward axonal conduction delays further decor-
relate this gamma-like input to STM. Activating strong plas-
ticity in STM (k = kp; Materials and Methods; Table 1) has a
noticeable effect on the amplitude of stimulus-locked oscil-
latory STM activity after as little as 100ms (Fig. 3C, STM).

Multi-itemworking memory
In Figure 3D, we have shown pattern-specific subpopu-

lations in STM emerging from FF input. Modulated STM
plasticity allows for the quick formation of rather weak
STM cell assemblies from one-shot learning. When we in-
clude plastic STM backprojections, these assemblies can
serve as an index for specific LTM memories and provide
top-down control signals for memory maintenance and
retrieval. STM backprojections with fast Hebbian plastic-
ity can index multiple activated memories in the closed
STM–LTM loop. In Figure 4A, we show network activity
following targeted activation of five LTM memories. Under
an increased unspecific noise drive (rL23bg�high; Table 2),
STM cell assemblies formed during the brief plasticity-
modulated stimulus phase (Fig. 3D) may activate sponta-
neously. These brief bursts of activity are initially weak
and different from the theta-like cycles of repeated fast
bursting seen in LTM attractor activity.
STM recurrent connections remain plastic (k = 1)

throughout the simulation, so each reactivation event fur-
ther strengthens memory-specific cell assemblies in STM.
As a result, there is a noticeable ramp-up in the strength
of STM pattern-specific activity over the course of the
delay period (Fig. 4A, increasing burst length and ampli-
tude). STM backprojections are also plastic and thus ac-
quire memory specificity from STM–LTM coactivations,
especially during the initial stimulation phase. Given
enough STM cell assembly firing, their sparse but potenti-
ated backprojections can trigger associated memories in
LTM. Weakly active assemblies may fail to do so. In the
example of Figure 4A, we can see a few early STM
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reactivations that are not accompanied (or quickly fol-
lowed) by a corresponding LTM pattern activation (of the
same color) in the first 2 s after the plasticity-modulated
stimulation phase. When LTM is triggered, there is a no-
ticeable FB delay (Fig. 4C), which we will address together
with aforementioned FF delays in the analysis of recall dy-
namics during a multi-item, multimodal recall task.
Cortical FF and FB pathways between LTM and STM

form a loop, so each LTM activation will again feed into
STM, typically causing a second peak of activation in
STM 40ms after the first (Fig. 4C). The forward delay from
LTM to STM, which we have seen earlier in the stimulus-
driven input phase (Fig. 3C), is still evident here in this de-
layed secondary increase of the STM activation following
LTM onset. The reverberating cross-cortical activation ex-
tends/sustains the memory activation and thus helps to
stabilize item-specific STM cell assemblies and their
specificity. This effect may be called auto-consolidation,
and it is an emergent feature of the plastic STM–LTM loop
in our model. It occurs on a timescale governed by the un-
modulated plasticity time constant (k = knormal, tp = 5 s;
Table 1). After a few seconds, the network has effectively
stabilized and typically maintains a small set of three to
four activated long-term memories. The closed STM–LTM
loop thus constitutes a functional multi-itemWM.
A crucial feature of any WM system is its flexibility, and

Figure 4B highlights an example of rapid updating. The
maintained set of activated memories can be weakened by
stimulating yet another set of input memories. Generally
speaking, earlier items are reliably displaced from active
maintenance in our model if activation of the new items is
accompanied by the same transient elevation of plasticity
(kp/knormal; Table 1) used during the original encoding of the
first five memories.
In line with the earlier results by Fiebig and Lansner

(2017), cued activation can usually still retrieve previously
maintained items. The rate of decay for memories outside
the maintained set depends critically on the amount of
noise in the system, which erodes the learned associa-
tions between STM and LTM neurons as well as STM cell
assemblies. We note that such activity-dependent memo-
ry decay is substantially different from time-dependent
decay, as shown by Mi et al. (2017).

Multimodal, multi-itemworking memory
Next, we explore the ability of the closed STM–LTM

loop system to flexibly bind coactive pairs of long-term
memories from different modalities (LTMa and LTMb, re-
spectively). As both LTM activations trigger cells in STM
via FF projections, a unique joint STM cell assembly with
shared pattern selectivity is created. Forward activations
include excitation and inhibition, and combine nonlinearly
with each other (Materials and Methods) and with prior
STM content.
Figure 5 illustrates how this new index then supports

WM operations, including delay maintenance through
STM-paced coactivation events and stimulus-driven as-
sociative memory pair completion. The three columns of
Figure 5 illustrate the following three fundamental modes
of the closed STM–LTM loop: stimulus-driven encoding,

WM maintenance, and associative recall. The top three
rows show sampled activity of a single trial, whereas the
bottom row shows multitrial averages.
During stimulus-driven fast binding, we coactivate

memories from both LTMs by brief 50ms cues that trigger
activation of the corresponding memory patterns. The av-
erage of peristimulus activations reveals 456 7.3ms LTM
attractor activation delay, followed by 436 7.8ms FF
delay (about half of which is explained by axonal conduc-
tion delays due to the spatial distance between LTM and
STM) from the onset of the LTM activations to the onset of
the input-specific STM response (Fig. 5, top left, bottom
left).
During WM maintenance, a 10 s delay period, paired

LTM memories reactivate together. The onset of these
paired activations is a lot more variable than during cued
activation with an FB delay mean of 41.56 15.3ms,
mostly because the driving STM activations are of vari-
able size and strength. Over the course of the mainte-
nance period, the oscillatory dynamics of the LTMs
changes. In particular, LFP spectral power as well as co-
herence between LTMs in the broad gamma band (30–
80Hz) increases (p, 0.001 for each of two permutation
tests comparing average spectral power/coherence in the
gamma band between two intervals during the delay pe-
riod: 4–8 s and 8–12 s; n=25 trials). To study the fast os-
cillatory dynamics of the LFP interactions between LTMs
during the WMmaintenance, mediated by STM, we follow
up the coherence analysis and examine the gamma
phase synchronization effect using PLV with 0.5 s sliding
window (see Materials and Methods). It appears that the
gamma phase coupling also increases during the second
part of the WMmaintenance period (p, 0.001 in the anal-
ogous permutation test, as described above; Fig. 6).
Following the maintenance period, we test the ability of

the memory system for bimodal associative recall. To this
end, we cue LTMa, again using a targeted 50ms cue for
each memory, and track the systems response across the
STM–LTM loop. We compute multitrial averages of peri-
stimulus activations during recall testing (Fig. 5, bottom
right). Following cued activation of LTMa, STM responds
with the related joint cell assembly activation as the input
is strongly correlated to the learned inputs, as a result of
the simultaneous activation with LTMb earlier on. Similar
to the mnemonic function of an index, the completed
STM pattern then triggers the associated memory in
LTMb through backprojections. STM activation now ex-
tends far beyond the transient activity of LTMa because
STM recurrent connectivity and the STM–LTMb recur-
rence re-excites it. The temporal overlap between associ-
ated LTMa and LTMb memory activations peaks at
;125ms after the initial stimulus to LTMa.

Network power spectra and the nonassociative
control case
Figure 7 (top) shows multitrial peristimulus/periactiva-

tion activity traces for a control task, where learned and
maintained LTMa items are not associated with concur-
rent LTMb activations. LTMa items are still encoded in
STM, maintained over the delay, and recalled by specific
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cues, but LTMb now remains silent throughout the main-
tenance period (Fig. 7, top left) and, as expected, does
not show any evidence of memory activation following
LTMa-specific cues during recall testing (Fig. 7, top right,
Fig. 8, LFP signal). The logarithmic power spectra (Fig. 7,
bottom) show a noticeable difference between the normal
associative and the nonassociative control trials. The lat-
ter displays a significant drop in LTMb power across the
board, particularly during the maintenance period. This
can be explained by the overall lower number of memory
reactivations in STM during the nonassociative control
task (2.586 0.28 vs 1.626 0.47 reactivations/s).

Top-down and bottom-up delays
We collected distributions of FF and FB delays during

associative recall (Fig. 9). To facilitate a more immediate

comparison with biological timing data, we also com-
puted the bottom-up and top-down response latencies
of the model in analogy to Tomita et al. (1999). Their
study explicitly tested widely held beliefs about the ex-
ecutive control of PFC over ITC in memory retrieval. To
this end, they identified and recorded neurons in ITC of
monkeys trained to memorize several visual stimulus–
stimulus associations. They used a posterior-split brain
paradigm to cleanly disassociate the timing of the bot-
tom-up (contralateral stimuli) and top-down (ipsilateral
stimuli) responses in 43 neurons that were significantly
stimulus selective in both conditions. They observed
that the latency of the top-down response (178ms) was
longer than that of the bottom-up response (73ms).
Our simulation is analogous to this experimental setup

with respect to some key features, such as the spatial ex-
tent of memory areas (STM/dlPFC, ;289 mm2) and

Figure 5. Population firing rates of networks and memory-specific subpopulations during three different modes of network activity.
Top half, Exemplary activation of three memories (blue, green, and red, respectively) in STM (first row), LTMa (second row), and
LTMb (third row) during the following three different modes of network activity: the initial association of pairs of LTM memory activa-
tions in STM (left column), WM maintenance through spontaneous STM-paced activations of bound LTM memory pairs (middle col-
umn), and cue-driven associative recall of previously paired stimuli (right column). Bottom half, Multitrial peristimulus activity traces
from the three cortical patches across 100 trials (495 traces, as each trial features five activated and maintained LTM memory pairs
and very few failures of paired activation). Shaded areas indicate an SD from the underlying traces. Vertical dashed lines denote
mean onset of activity for each network, as determined by activation half-width (Materials and Methods), also denoted by a box
underneath the traces. Error bars indicate an SD from activation onset and offset. Mean peak activation is denoted by a triangle on
the box, and shaded arrows to the left of the box denote targeted pattern stimulation of a network at time 0. As there are no external
cues during WM maintenance (i.e., the delay period), we use detected STM activation onset to align firing rate traces of 5168 STM-
paced LTM reactivations across trials and reactivation events for averaging. White arrows annotate FF and FB delay, as defined by
respective network onsets. Extended Data Figure 5-1 further illustrates the subsampled spiking activity in the three networks, during
the multimodal LTM binding task.
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interarea distances (40 mm cortical distance between
PFC and ITC). These measures heavily influence the re-
sulting connection delays and the time needed for infor-
mation integration. In analogy to the posterior-split
brain experiment, the LTMa and LTMb in our model are
unconnected. However, we now have to consider them
as ipsilateral and contralateral visual areas in ITC. The
display of a cue in one hemifield in the experiment then
corresponds to the LTMa-sided stimulation of an asso-
ciated memory pair in the model. This arrangement
forces any LTM interaction through STM (representing
PFC) and allows us to treat the cued LTMa memory ac-
tivation as a bottom-up response, whereas the much
later activation of the associated LTMb representation
is related to the top-down response in the experimental
study. Figure 9 shows the distribution of these latencies
in our simulations, where we also marked the mean la-
tencies measured by Tomita et al. (1999). The mean of
our bottom-up delay (72.9ms) matches the experimen-
tal data (73ms), whereas the mean of the broader top-
down latency distribution (155.2ms) is a bit lower than
that in the monkey study (178ms). Only 31 % (48 ms) of
the top down delay (155.2 ms) was explained by the
spatial distance between networks, as verified by a si-
mulated model with 0 mm distance between networks.

Discussion
In this work, we have proposed and studied a novel

theory for WM that rests on the dynamic interactions
between STM and LTM stores enabled by fast synaptic
plasticity. In particular, it hypothesizes that activity in
parietotemporal LTM stores targeting PFC via fixed or
slowly plastic and patchy synaptic connections triggers
an activity pattern in PFC, which then gets rapidly

encoded by means of fast Hebbian plasticity to form a
cell assembly. Equally plastic backprojections from
PFC to the LTM stores are enhanced as well, thereby
associating the formed PFC “index” specifically with
the active LTM cell assemblies. This rapidly but tempo-
rarily enhanced connectivity produces a functional WM
superassembly (a distributed constellation of cell as-
semblies) capable of encoding and maintaining multiple
individual LTM items (i.e., bringing these LTM represen-
tations “online”) and forming novel associations within
and between several connected LTM areas and modal-
ities. The PFC cell assemblies themselves do not
encode much information but act as indices of
LTM stores, which contain additional information that is
also more permanent. The underlying highly plastic
connectivity and thereby the WM itself is flexibly remod-
eled and updated as new incoming activity gradually
overwrites previous WM content. How quickly working
memory is established after the initial encoding period,
critically depends on plasticity modulation, network
size, and overall activity. Our model does not address
other important aspect of WM (e.g., the task relevance
filtering and attentional gating involving upstream sub-
cortical structures like basal ganglia and amygdala;
O’Reilly and Frank, 2006; McNab and Klingberg,
2008).
We have studied the functional and dynamical implica-

tions of this theory by implementing and evaluating a spe-
cial case of a biologically plausible large-scale spiking
neural network model representing PFC reciprocally con-
nected with two LTM areas (e.g., visual and auditory) in
temporal cortex. We have shown how a number of single
LTM items can be encoded and maintained online, and
how pairs of simultaneously activated items can become
jointly indexed and associated. Activating one pair mem-
ber now also activates the other one indirectly via PFC
with a short latency. We have further demonstrated that
this kind of WM can readily be updated, such that as new
items are encoded, old items are fading away, whereby
the active WM content is replaced. Notably, unlike in our
model, in a biological brain many long-range connections
exist between LTM areas, and they will significantly influ-
ence the sequence of recalled items.
Recall dynamics in the presented model are in most re-

spects identical to a previous cortical associative memo-
ry model (Lansner, 2009) and also to that of single-item
persistent activity WM models (Camperi and Wang,
1998). Any activated memory item, whether randomly or
specifically triggered, is subject to known and previously
well characterized associative memory dynamics, such
as pattern completion, rivalry, bursty reactivation dy-
namics, and oscillations in different frequency bands
(Lundqvist et al., 2010, 2013; Silverstein and Lansner,
2011; Herman et al., 2013). Moreover, sequential learn-
ing and recall could readily be incorporated (Tully et al.,
2016). This could, for example, support encoding of se-
quences of items in WM rather than a set of unrelated
items, resulting in reactivation dynamics reminiscent of,
for instance, the phonological loop (Baddeley et al.,
1998; Burgess and Hitch, 2006).

Figure 6. Gamma band PLV between LTMa and LTMb during
WM maintenance. PLV is estimated using sliding window of
size 0.5 s (the period between 4 and 12 s is shown). Two
bars demonstrate the average gamma-band PLV over the
first (4–8 s) and the second part (8–12 s) of the WM mainte-
nance period. Shaded area and error bars correspond to the
SEM calculated over n = 25 trials.
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Cortical indexing theory for WM
Our model draws inspiration from the hippocampal in-

dexing theory (Teyler and DiScenna, 1986), originally pro-
posed to account for the role of hippocampus in storing
episodic memories (Teyler and Rudy, 2007). While there
are key similarities, there are also a number of important
differences. Similar to the hippocampus, PFC is well con-
nected with association cortices to directly or indirectly in-
fluence activity across most of cortex (Pandya and
Yeterian, 1991; Pandya and Barnes, 2019). Unlike the hip-
pocampal indexing theory, which posits that such influ-
ence is not seen until the eventual recall, we propose and
demonstrate in simulation that the creation of the PFC
index has immediate effects on neocortical activity pat-
terns, manifested as WM delay activity across widely dis-
tributed cortical areas (Tomita et al., 1999; Sreenivasan
and D’Esposito, 2019).
In line with Teyler and Discenna (1986), we propose

that the rapid encoding necessitated by indexing is en-
abled by transient dopaminergic modulation of plasticity

among recurrently connected neurons and their FB pro-
jections onto cortex. As suggested for hippocampus,
PFC does not store the sensory content of WM itself, but
rather an index to task-relevant information carried by
areas lower in the cortical hierarchy. As PFC integrates
information across cortex (Miller and Cohen, 2001), the
index becomes part of a temporary WM superassembly.
Hippocampal indexing is largely seen as a process pre-
ceding cortical long-term consolidation, whereby asso-
ciations between indexed areas eventually become
independent of hippocampus. Our model makes no such
claim for the role of PFC. On the contrary, WM function
rests on the fluidly changing selectivity of PFC neurons,
which would be hampered by strong LTP and slow proc-
esses of consolidation. Yet an intriguing possibility sug-
gested by our quantitative model is that a hippocampal
indexing network with a longer plasticity time constant
operating analogously to our PFC model could support
such a consolidation process by reinstating activity in
cortical LTM areas.

Figure 7. Nonassociative control case and power spectral analysis. Top half, Multitrial peristimulus activity traces from the three
cortical patches across 25 trials following WM-encoded LTMa activations as before, but without associated LTMb memory acti-
vations. Shaded areas indicate a SD from the underlying traces. Activation half-widths (Materials and Methods) denoted by a
box underneath the traces. Error bars indicate an SD from activation onset and offset. Mean peak activation is denoted by a tri-
angle on the box, and shaded arrows to the left of the box denote targeted pattern stimulation of LTMa at time 0. As there are
no external cues during WM maintenance (called the delay period), we use detected STM activation onset to align firing rate
traces of 406 STM-paced LTMa reactivations across trials and reactivation events for averaging. There is no evidence of associ-
ated LTMb activations in the control case (only small increases in spike rate variability). White arrows annotate FF and FB delay,
as defined by respective network onsets. Bottom half, Power spectral density of synthesized LFPs estimated over the mainte-
nance (left) and recall (right) periods for STM and both LTMs in two cases: with (solid lines) and without (dashed line; control
case) associated LTMb memory activations. Please note the log scale. Shaded areas correspond to the SD of the mean PSD
over 25 trials. The decrease in theta- and gamma-band power observed during the maintenance (left) and recall (right) periods in
the LTMb in the control case is due to lack of memory pattern reactivations in LTMb as they are not associated with LTMa via
STM.
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The case for Hebbian plasticity
The underlying mechanism of our model is fast Hebbian

plasticity, not only in the intrinsic PFC connectivity, but
also in the projections from PFC to LTM stores. The for-
mer has some experimental support (Volianskis and
Jensen, 2003; Erickson et al., 2010; Park et al., 2014;
Volianskis et al., 2015; Pradier et al., 2018), whereas the
latter remains a prediction of the model. D1R activation by
DA is strongly implicated in reward learning and synaptic
plasticity regulation in the basal ganglia (Wickens, 2009).
In analogy, we propose that D1R activation is critically in-
volved in the synaptic plasticity intrinsic to PFC and its
projections to LTM stores, which would also explain the
comparatively dense DA innervation of PFC and the
prominent WM effects of PFC DA level manipulation
(Goto et al., 2010; Arnsten and Jin, 2014). In the model
presented here, the parameter k represents the level of
DA–D1R activation, which in turn regulates synaptic plas-
ticity. We typically increase k temporarily (Table 1) in con-
junction with stimulation of LTM and WM encoding, in a
form of attentional gating. Excessive modulation limits
WM capacity to one to two items, while less modulation
diminishes the strength of cell assemblies beyond what is
necessary for reactivation and LTMmaintenance.
When the synaptic plasticity WM hypothesis was first

presented and evaluated, it was based on synaptic facili-
tation (Mongillo et al., 2008; Lundqvist et al., 2011).
However, such non-Hebbian plasticity is only capable of
less specific forms of memory. Activating a cell assembly
comprising a subset of neurons in an untrained STM net-
work featuring such plasticity would merely facilitate all
outgoing synapses from active neurons. Likewise, an en-
hanced elevated resting potential resulting from intrinsic
plasticity would make the targeted neurons more excita-
ble. In neither case would there be any coordination of

activity specifically within the stimulated cell assembly.
Thus, if superimposed on an existing LTM, such forms of
plasticity may well contribute to WM, but they are by
themselves not capable of supporting encoding of novel
memory items or the multimodal association of already
existing ones. In contrast, previous work by Fiebig and
Lansner (2017) showed that fast Hebbian plasticity similar
to short-term potentiation (Erickson et al., 2010) allows ef-
fective one-shot encoding of novel STM items. In the ex-
tended model proposed here, PFC can additionally bind
and bring online existing but previously unassociated
LTM items across multiple modalities by means of the
same kind of plasticity in backprojections from PFC to pa-
rietotemporal LTM stores.
On a side note, this implementation of fast Hebbian

plasticity reproduces a remarkable aspect of short-term
potentiation or labile LTP: it decays in an activity-depend-
ent manner rather than with time (Volianskis and Jensen,
2003; Volianskis et al., 2015; Pradier et al., 2018).
Although we used the BCPNN learning rule to reproduce
these effects, we expect that other Hebbian learning rules

Figure 8. Exemplary recording of the LFP signal in LTMb fol-
lowing two cued activations of LTMa after learning and mainte-
nance of associative LTMa–LTMb memory pairs (normal) or
nonassociative LTMa memories without concurrent LTMb acti-
vation (control). While the LFP signal shows clear activation of
associated LTMb items, LTMa-specific cues do not elicit mem-
ory activations in LTMb in the control case.

Figure 9. Comparison of key activation delays during associa-
tive recall in model and experiment following a cue to LTMa.
Top left, Feedforward delay distribution in the model, as defined
by the temporal delay between LTMa onset and STM onset
(Fig. 4, bottom right). Top right, Bottom-up delay distribution in
the model, as defined by the temporal delay between stimula-
tion onset and LTMa peak activation. The red line denotes the
mean bottom-up delay, as measured by Tomita et al. (1999).
Bottom left, Feedback delay distribution in the model, as de-
fined by the temporal delay between STM onset and LTMb
onset (Fig. 4, bottom-right, measured by half-width). Bottom
right, Top-down delay distribution in the model, as defined by
the temporal delay between stimulation onset and LTMb peak
activation. The red line denotes the mean bottom-up delay, as
measured by Tomita et al. (1999). Model delays were averaged
over 100 trials with five paired stimuli each.
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allowing for neuromodulated fast synaptic plasticity could
give comparable results.

Experimental support and testable predictions
Our model has been built from available relevant micro-

scopic data on neural and synaptic components as well
as the modular structure and connectivity of selected
cortical areas in macaque monkey. Its sparse corticocorti-
cal long-range connectivity is compatible with neuroana-
tomical data and can add specific predictions of the
nature of this connectivity. The network so designed gen-
erates a well organized macroscopic dynamic working
memory function, which can be interpreted in terms of
manifest behavior and validated against cognitive experi-
ments and data. Our model provides a powerful tool to in-
vestigate and examine the link between microscopic and
macroscopic level processes and data. It suggests novel
mechanistic hypotheses and inspiration for planning and
performing experiments that can develop further the
model, or potentially falsify it.
Unfortunately, the detailed neural processes and dy-

namics of our new model are not easily accessible experi-
mentally as they are intrinsically expressed at multiple
scales (e.g., mesoscopic field potentials and population
spiking at macroscopic spatial scales). In consequence, it
is difficult to find direct and quantitative results to validate
the model. To our knowledge, no other WM model of com-
parable detail has been reported. On the one hand, some
recent models that explain WM activity through the long-
range interactions of STM and LTM systems (Bouchacourt
and Buschman, 2019) lack defensible constraints on the
density of the long-range projections involved. On the
other hand, a more complete cortical model by Schmidt et
al. (2018), accounting for available corticocortical connec-
tivity data from layer-specific retrograde tracing experi-
ments (Markov et al., 2014), was not concerned with any
concrete aspects of cognitive function, such as working
memory. We specifically tested extremely sparse and plas-
tic corticocortical connectivity and demonstrated its effec-
tiveness in indexing working memory.
In analyzing our resulting bottom-up and top-down de-

lays, we drew an analogy to a split-brain experiment
(Tomita et al., 1999) because of its clean experimental
design (even controlling for subcortical pathways) and
found similar temporal dynamics in our highly sub-
sampled cortical model. The timing of interarea signals
also constitutes a testable prediction for multimodal
memory experiments. Furthermore, reviews of intracra-
nial as well as electroencephalography (EEG) recordings
conclude that theta band oscillations play an important
role in long-range communication during successful
memory retrieval (Sauseng et al., 2004; Johnson and
Knight, 2015). With respect to theta band oscillations in
our model, we have shown that STM leads the LTM net-
works during maintenance, engages bidirectionally dur-
ing recall (due to the STM–LTM loop), and lags during
stimulus-driven encoding and LTM activation, reflecting
experimental observations (Anderson et al., 2010). These
effects are explained by our model architecture, which
imposes delays due to the spatial extent of networks and

their distances from each other. Fast oscillations in the
broad gamma band, often nested in the theta cycle, are
strongly linked to local processing and activated memo-
ry items in our model, also matching experimental find-
ings (Canolty and Knight, 2010; Johnson and Knight,
2015). Local frequency coupling is abundant with signifi-
cant phase–amplitude coupling (Fig. 3B), and was well
characterized in related models (Herman et al., 2013).
The most critical requirement and thus prediction of our

theory and model is the presence of fast Hebbian plastic-
ity in the PFC backprojections to parietotemporal memory
areas. Without such plasticity, our model cannot explain
the necessary STM–LTM binding. This plasticity is likely
to be subject to neuromodulatory control, presumably
with DA and D1R activation involvement. Since short-
term potentiation decays with activity, a high noise level
could be an issue since it could shorten WM duration (see
The case for Hebbian plasticity). The evaluation of this re-
quirement is hampered by lack of experimental evidence
and characterization of the synaptic plasticity in cortico-
cortical projections.
One of the neurodynamical manifestations of the fast

associative plasticity in the PFC backprojections is a func-
tional coupling between LTM stores. Importantly, this
long-range coupling in our model is mediated by the PFC
network alone, as manifested during the delay period free
of any external cues, and is reflected in the synchroniza-
tion of fast gamma oscillations. Although the predominant
view has been that gamma is restricted to short distances,
there is growing evidence for cortical long-distance
gamma phase synchrony between task-relevant areas as
a correlate of cognitive processes (Tallon-Baudry et al.,
1998; Doesburg et al., 2008) including WM (Palva et al.,
2010). In this regard, our model generates even a more
specific prediction about the notable temporal enhance-
ment of gamma phase coupling over the delay period,
which could be tested with macroscopic human brain re-
cordings (e.g., EEG or MEG), provided that a WM task in-
volves a sufficiently long delay period.
Finally, our model suggests the occurrence of a double

peak of frontal network activation in executive control of
multimodal LTM association (Figs. 4C, 5, STM population
activity during WM maintenance). The first one originates
from the top-down control signal itself, and the second
one is a result of corticocortical reentry and a successful
activation of one or more associated items in LTM. As
such, the second peak should also be correlated with
successful memory maintenance or associative recall.

Possible role for fast Hebbian plasticity in variable
binding
The “binding problem” is a classical and extensively

studied problem in perceptual and cognitive neuro-
science (Zimmer et al., 2012). Binding occurs in different
forms and at different levels, from lower perceptual to
higher cognitive processes (Reynolds and Desimone,
1999; Zimmer et al., 2006; Zmigrod et al., 2014).
Variable binding is a cognitive kind of neural binding in

the form of a temporary variable–value association of
items previously not connected by earlier experience and
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learning (Cer and O’Reily, 2012; Garnelo and Shanahan,
2019). A simple special case is the association of a math-
ematical variable and its value “The value of x is 2” (i.e.,
x=2) or of an object and its proper name as in “Charlie is
my parrot” (Fig. 10). This and other more advanced forms
of neural binding are assumed to underlie complex func-
tions in human cognition including logical reasoning and
planning (Pinkas et al., 2012), but have been a challenge to
explain by neural network models of the brain (van der
Velde and de Kamps, 2015; Legenstein et al., 2016). Work
is in progress to uncover how such variable binding mech-
anisms can be used in neuro-inspired models of more ad-
vanced human logical reasoning (Pinkas et al., 2013).
Based on our WM model, we propose that a PFC/STM

index mediated by fast Hebbian plasticity provides a neu-
ral mechanism that could explain such variable binding.
The joint index formed in PFC during presentation of a
name–value pair serves to temporarily bind the corre-
sponding representations. The value could be multimodal
and include symbolic as well as subsymbolic compo-
nents. Turning to Figure 5 above, imagine that one of the
LTMa patterns represents the image of a parrot and one
pattern in LTMb represents the proper name “Charlie.” If
someone says “Charlie is my parrot,” these previously not
associated items are rapidly bound via a joint PFC index.
While this short-term connectivity remains, the name
“Charlie” will trigger the internal object representation of a
parrot, and seeing a parrot will trigger the name “Charlie”
with the dynamics shown in the right-most panels of
Figure 5 Flexible updating of the PFC index (Fig. 4) will
avoid confusion even if in the next moment my neighbor
shouts “Charlie” to call his dog, also named Charlie. If im-
portant enough or repeated a number of times, this asso-
ciation could further consolidate in LTM.

Conclusions
We have formulated an indexing theory for cortical WM

and tested it by means of computer simulations, which

demonstrated the versatile WM properties of a large-scale
spiking neural network model implementing key aspects of
the theory. Our model provides a new mechanistic under-
standing of WM with distributed cortical correlates and
variable binding phenomena, which connects microscopic
neural processes with macroscopic observations and cog-
nitive functions in a way that only computational models
can do. While we designed and constrained this model
based on macaque data, the theory itself is quite general,
and we expect our findings to apply also to mammals, in-
cluding humans, commensurate with changes in key
model parameters (e.g., cortical distances, axonal con-
ductance speeds). Many aspects of WM function remain to
be tested and incorporated (e.g., its close interactions with
basal ganglia; O’Reilly and Frank, 2006).
WM dysfunction has an outsized impact on mental

health, intelligence, and quality of life. Progress in mecha-
nistic understanding of its function and dysfunction is
therefore very important for society. We hope that our the-
oretical and computational work provides inspiration for
experimentalists to scrutinize the theory and model, espe-
cially with respect to neuromodulated fast Hebbian syn-
aptic plasticity and large-scale network architecture and
dynamics. Only in this way can we get closer to a more
solid understanding and theory of WM, and position fu-
ture computational research appropriately even in the
clinical and pharmaceutical realm.

References

Anderson KL, Rajagovindan R, Ghacibeh GA, Meador KJ, Ding M
(2010) Theta oscillations mediate interaction between prefrontal
cortex and medial temporal lobe in human memory. Cereb Cortex
20:1604–1612.

Arnsten AFT, Jin LE (2014) Molecular influences on working memory
circuits in dorsolateral prefrontal cortex. Prog Mol Biol Transl Sci
122:211–231.

Baddeley A, Gathercole S, Papagno C (1998) The Phonological Loop
as a Language Learning Device. Psychol Rev 105:158–173.

Figure 10. Variable value binding via index in PFC. Initially, the multimodal representation of “parrot” exists in LTM comprising sym-
bolic and subsymbolic components side by side with “Charlie” as a representation of a proper name. It is hypothesized here that
when someone states that “Charlie is my parrot,” the name “Charlie” is temporarily and reciprocally bound to the parrot representa-
tion via PFC, mediated by fast Hebbian plasticity. Pattern completion effect now allows “Charlie” to trigger the entire assembly and,
analogously, makes “flying” or the sight of a given parrot trigger “Charlie.” If important enough or repeated a couple of times this as-
sociation could consolidate in LTM.

Research Article: New Research 19 of 22

March/April 2020, 7(2) ENEURO.0374-19.2020 eNeuro.org

http://dx.doi.org/10.1093/cercor/bhp223
https://www.ncbi.nlm.nih.gov/pubmed/19861635
http://dx.doi.org/10.1016/B978-0-12-420170-5.00008-8
https://www.ncbi.nlm.nih.gov/pubmed/24484703
http://dx.doi.org/10.1037/0033-295x.105.1.158
https://www.ncbi.nlm.nih.gov/pubmed/9450375


Bouchacourt F, Buschman TJ (2019) A flexible model of working
memory. Neuron 103:147–160.e8.

Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. J Neurophysiol
94:3637–3642.

Burgess N, Hitch GJ (2006) A revised model of short-term memory
and long-term learning of verbal sequences. J Mem Lang 55:627–
652.

Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone
G, Visco-Comandini F, Pantano P, Innocenti GM (2013) Diameter,
length, speed, and conduction delay of callosal axons in macaque
monkeys and humans: comparing data from histology and mag-
netic resonance imaging diffusion tractography. J Neurosci
33:14501–14511.

Camperi M, Wang XJ (1998) A model of visuospatial working memory
in prefrontal cortex: recurrent network and cellular bistability. J
Comput Neurosci 5:383–405.

Canolty RT, Knight RT (2010) The functional role of cross-frequency
coupling. Trends Cogn Sci 14:506–515.

Carter GC (1987) Coherence and time delay estimation. Proc IEEE
75:236–255.

Cer DM, O’Reily RC (2012) Neural mechanisms of binding in the hip-
pocampus and neocortex: insights from computational models. In:
Handbook of binding and memory: perspectives from cognitive
neuroscience (Zimmer HD, Mecklinger A, Lindenberger U, eds),
New York: Oxford UP.

Chrysanthidis N, Fiebig F, Lansner A (2019) Introducing double bou-
quet cells into a modular cortical associative memory model.
J Comput Neurosci 47:223–230.

Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic
mechanisms and network dynamics underlying spatial working
memory in a cortical network model. Cereb Cortex 10:910–923.

Crochet S, Petersen CCH (2009) Cortical dynamics by layers.
Neuron 64:298–300.

DeFelipe J, Ballesteros-Yáñez I, Inda MC, Muñoz A (2006) Double-
bouquet cells in the monkey and human cerebral cortex with spe-
cial reference to areas 17 and 18. Prog Brain Res 154:15–32.

D’Esposito M, Postle BR (2015) The cognitive neuroscience of work-
ing memory. Annu Rev Psychol 66:115–142.

Doesburg SM, Roggeveen AB, Kitajo K, Ward LM (2008) Large-scale
gamma-band phase synchronization and selective attention.
Cereb Cortex 18:386–396.

Douglas RJ, Martin K (2004) Neuronal circuits of the neocortex. Annu
Rev Neurosci 27:419–451.

Erickson MA, Maramara LA, Lisman J (2010) A single brief burst in-
duces glur1-dependent associative short-term potentiation: a po-
tential mechanism for short-term memory. J Cogn Neurosci
22:2530–2540.

Eriksson J, Vogel EK, Lansner A, Bergström F, Nyberg L (2015)
Neurocognitive architecture of working memory. Neuron 88:33–
46.

Fiebig F, Lansner A (2014) Memory consolidation from seconds to
weeks: a three-stage neural network model with autonomous rein-
statement dynamics. Front Comput Neurosci 8:1–17.

Fiebig F, Lansner A (2017) A spiking working memory model based
on Hebbian short-term potentiation. J Neurosci 37:83–96.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding
of visual space in the monkey’s dorsolateral prefrontal cortex.
J Neurophysiol 61:331–349.

Fuster JM (2009) Cortex and memory: emergence of a new para-
digm. J Cogn Neurosci 21:2047–2072.

Garnelo M, Shanahan M (2019) Reconciling deep learning with sym-
bolic artificial intelligence: representing objects and relations. Curr
Opin Behav Sci 29:17–23.

Gewaltig M-O, Diesmann M (2007) NEST (NEural Simulation Tool).
Scholarpedia 2:1430.

Girard P, Hupé JM, Bullier J (2001) Feedforward and feedback con-
nections between areas V1 and V2 of the monkey have similar
rapid conduction velocities. J Neurophysiol 85:1328–1331.

Goldman-Rakic PS (1995) Cellular basis of working memory review.
Neuron 14:477–485.

Goto Y, Yang CR, Otani S (2010) Functional and dysfunctional syn-
aptic plasticity in prefrontal cortex: roles in psychiatric disorders.
Biol Psychiatry 67:199–207.

Herman PA, Lundqvist M, Lansner A (2013) Nested theta to gamma
oscillations and precise spatiotemporal firing during memory re-
trieval in a simulated attractor network. Brain Res 1536:68–87.

Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K1 channel
regulation of signal propagation in dendrites of hippocampal py-
ramidal neurons. Nature 387:869–875.

Houzel JC, Milleret C, Innocenti G (1994) Morphology of callosal
axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci
6:898–917.

Johnson EL, Knight RT (2015) Intracranial recordings and human
memory. Curr Opin Neurobiol 31:18–25.

Kapfer C, Glickfeld LL, Atallah BV, Scanziani M (2007) Supralinear in-
crease of recurrent inhibition during sparse activity in the somato-
sensory cortex. Nat Neurosci 10:743–753.

Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring
phase synchrony in brain signals. Hum Brain Mapp 8:194–208.

Lansner A (2009) Associative memory models: from the cell-assem-
bly theory to biophysically detailed cortex simulations. Trends
Neurosci 32:178–186.

Lansner A, Marklund P, Sikström S, Nilsson L (2013) Reactivation in
working memory: an attractor network model of free recall. PLoS
One 8:e73776.

Legenstein R, Papadimitriou CH, Vempala S, Maass W (2016)
Variable binding through assemblies in spiking neural networks.
Paper presented at 30th Annual Conference on Neural Information
Processing Systems (NIPS 2016), Barcelona, Spain, December.

Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering
gives low-pass power spectra of local field potentials. J Comput
Neurosci 29:423–444.

Logothetis NK (2003) The underpinnings of the BOLD functional
magnetic resonance imaging signal. J Neurosci 23:3963–3971.

Lundqvist M, Rehn M, Djurfeldt M, Lansner A (2006) Attractor dy-
namics in a modular network model of neocortex. Network
17:253–276.

Lundqvist M, Compte A, Lansner A (2010) Bistable, irregular firing
and population oscillations in a modular attractor memory net-
work. PLoS Comput Biol 6:e1000803.

Lundqvist M, Herman P, Lansner A (2011) Theta and gamma power
increases and alpha/beta power decreases with memory load in
an attractor network model. J Cogn Neurosci 23:3008–3020.

Lundqvist M, Herman P, Lansner A (2013) Effect of prestimulus alpha
power, phase, and synchronization on stimulus detection rates in
a biophysical attractor network model. J Neurosci 33:11817–
11824.

Lundqvist M, Rose J, Herman P, Brincat SLL, Buschman TJJ, Miller
EKK (2016) Gamma and beta bursts underlie working memory.
Neuron 90:152–164.

Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud
C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C,
Knoblauch K, Kennedy H (2014) Anatomy of hierarchy: feedfor-
ward and feedback pathways in macaque visual cortex. J Comp
Neur 522:225–259.

McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia
control access to working memory. Nat Neurosci 11:103–107.

Mi Y, Katkov M, Tsodyks M (2017) Synaptic correlates of working
memory capacity. Neuron 93:323–330.

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex
function. Annu Rev Neurosci 24:167–202.

Miyashita Y (1993) Inferior temporal cortex: where visual perception
meets memory. Annu Rev Neurosci 16:245–263.

Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working
memory. Science 319:1543–1546.

Mountcastle VB (1997) The columnar organization of the neocortex.
Brain 120:701–722.

Research Article: New Research 20 of 22

March/April 2020, 7(2) ENEURO.0374-19.2020 eNeuro.org

http://dx.doi.org/10.1016/j.neuron.2019.04.020
https://www.ncbi.nlm.nih.gov/pubmed/31103359
http://dx.doi.org/10.1152/jn.00686.2005
https://www.ncbi.nlm.nih.gov/pubmed/16014787
http://dx.doi.org/10.1523/JNEUROSCI.0761-13.2013
https://www.ncbi.nlm.nih.gov/pubmed/24005301
https://www.ncbi.nlm.nih.gov/pubmed/9877021
http://dx.doi.org/10.1109/PROC.1987.13723
http://dx.doi.org/10.1093/cercor/10.9.910
https://www.ncbi.nlm.nih.gov/pubmed/10982751
http://dx.doi.org/10.1016/j.neuron.2009.10.024
http://dx.doi.org/10.1146/annurev-psych-010814-015031
https://www.ncbi.nlm.nih.gov/pubmed/25251486
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144152
http://dx.doi.org/10.1162/jocn.2009.21375
https://www.ncbi.nlm.nih.gov/pubmed/19925206
http://dx.doi.org/10.1016/j.neuron.2015.09.020
https://www.ncbi.nlm.nih.gov/pubmed/26447571
http://dx.doi.org/10.1523/JNEUROSCI.1989-16.2016
https://www.ncbi.nlm.nih.gov/pubmed/28053032
http://dx.doi.org/10.1152/jn.1989.61.2.331
https://www.ncbi.nlm.nih.gov/pubmed/2918358
http://dx.doi.org/10.1162/jocn.2009.21280
https://www.ncbi.nlm.nih.gov/pubmed/19485699
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1152/jn.2001.85.3.1328
https://www.ncbi.nlm.nih.gov/pubmed/11248002
http://dx.doi.org/10.1016/0896-6273(95)90304-6
https://www.ncbi.nlm.nih.gov/pubmed/7695894
http://dx.doi.org/10.1016/j.brainres.2013.08.002
http://dx.doi.org/10.1038/43119
https://www.ncbi.nlm.nih.gov/pubmed/9202119
http://dx.doi.org/10.1111/j.1460-9568.1994.tb00585.x
https://www.ncbi.nlm.nih.gov/pubmed/7952278
http://dx.doi.org/10.1038/nn1909
https://www.ncbi.nlm.nih.gov/pubmed/17515899
http://dx.doi.org/10.1002/(sici)1097-0193(1999)8:4&hx003C;194::aid-hbm4&hx003E;3.0.co;2-c
https://www.ncbi.nlm.nih.gov/pubmed/10619414
http://dx.doi.org/10.1371/journal.pone.0073776
https://www.ncbi.nlm.nih.gov/pubmed/24023690
http://dx.doi.org/10.1007/s10827-010-0245-4
https://www.ncbi.nlm.nih.gov/pubmed/20502952
https://www.ncbi.nlm.nih.gov/pubmed/12764080
http://dx.doi.org/10.1080/09548980600774619
https://www.ncbi.nlm.nih.gov/pubmed/17162614
http://dx.doi.org/10.1371/journal.pcbi.1000803
http://dx.doi.org/10.1162/jocn_a_00029
https://www.ncbi.nlm.nih.gov/pubmed/21452933
http://dx.doi.org/10.1523/JNEUROSCI.5155-12.2013
https://www.ncbi.nlm.nih.gov/pubmed/23864671
http://dx.doi.org/10.1016/j.neuron.2016.02.028
https://www.ncbi.nlm.nih.gov/pubmed/26996084
http://dx.doi.org/10.1002/cne.23458
https://www.ncbi.nlm.nih.gov/pubmed/23983048
http://dx.doi.org/10.1038/nn2024
http://dx.doi.org/10.1016/j.neuron.2016.12.004
https://www.ncbi.nlm.nih.gov/pubmed/28041884
http://dx.doi.org/10.1146/annurev.ne.16.030193.001333
https://www.ncbi.nlm.nih.gov/pubmed/8460893
http://dx.doi.org/10.1126/science.1150769
https://www.ncbi.nlm.nih.gov/pubmed/18339943
http://dx.doi.org/10.1093/brain/120.4.701


O’Reilly RC, Frank MJ (2006) Making working memory work: a com-
putational model of learning in the prefrontal cortex and basal gan-
glia. Neural Comput 18:283–328.

Okun M, Naim A, Lampl I (2010) The subthreshold relation between
cortical local field potential and neuronal firing unveiled by intracel-
lular recordings in awake rats. J Neurosci 30:4440–4448.

Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal
oscillations in the human cortex. J Neurosci 25:3962–3972.

Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neuronal syn-
chrony reveals working memory networks and predicts individual
memory capacity. Proc Natl Acad Sci U S A 107:7580–7585.

Pandya DN, Yeterian EH (1991) Prefrontal cortex in relation to other
cortical areas in rhesus monkey: architecture and connections.
Prog Brain Res 85:63–94.

Pandya DN, Barnes CL (2019) Architecture and connections of the
frontal lobe. In: The frontal lobes revisited, pp 41–72. Hove, UK:
Psychology Press.

Parisien C, Anderson CH, Eliasmith C (2008) Solving the problem of
negative synaptic weights in cortical models. Neural Comput
20:1473–1494.

Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, Zhuo
M, Kaang B-K, Collingridge GL (2014) NMDA receptor-dependent
long-term potentiation comprises a family of temporally overlap-
ping forms of synaptic plasticity that are induced by different pat-
terns of stimulation. Philos Trans R Soc Lond B Biol Sci
369:20130131.

Petersson ME, Yoshida M, Fransén EA (2011) Low-frequency sum-
mation of synaptically activated transient receptor potential chan-
nel-mediated depolarizations. Eur J Neurosci 34:578–593.

Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: com-
parative cytoarchitectonic analysis in the human and the macaque
brain and corticocortical connection patterns. Eur J Neurosci
11:1011–1036.

Pinkas G, Lima P, Cohen S (2012) A dynamic binding mechanism for
retrieving and unifying complex predicate-logic knowledge: In:
Artificial neural networks and machine learning–ICANN 2012: 22nd
International Conference on Artificial Neural Networks, Lausanne,
Switzerland, September 11–14, 2012, Proceedings, Part I (Villa A,
Wlodzislaw D, Erdi P, Masulli F, Palm G, eds), pp 482–490. Berlin
Heidelberg: Springer-Verlag.

Pinkas G, Lima P, Cohen S (2013) Representing, binding, retrieving
and unifying relational knowledge using pools of neural binders. In:
Biologically inspired cognitive architectures (Samsonovich AV,
Mason G, Editor-in-Chief), pp 87–95. Amsterdam: Elsevier.

Potjans TC, Diesmann M (2014) The cell-type specific cortical micro-
circuit: relating structure and activity in a full-scale spiking network
model. Cereb Cortex 24:785–806.

Pradier B, Lanning K, Taljan KT, Feuille CJ, Nagy MA, Kauer JA
(2018) Persistent but labile synaptic plasticity at excitatory synap-
ses. J Neurosci 38:5750–5758.

Ren M, Yoshimura Y, Takada N, Horibe S, Komatsu Y (2007)
Specialized inhibitory synaptic actions between nearby neocortical
pyramidal neurons. Science 316:758–761.

Reynolds JH, Desimone R (1999) The role of neural mechanisms of
attention in solving the binding problem. Neuron 24:19–29, 111–
125.

Sakata S, Harris KD (2009) Laminar structure of spontaneous and
sensory-evoked population activity in auditory cortex. Neuron
64:404–418.

Sandberg A, Lansner A, Petersson KM, Ekeberg O (2002) A Bayesian
attractor network with incremental learning. Network 13:179–194.

Sauseng P, Klimesch W, Doppelmayr M, Hanslmayr S, Schabus M,
Gruber WR (2004) Theta coupling in the human electroencephalo-
gram during a working memory task. Neurosci Lett 354:123–126.

Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ
(2018) Multi-scale account of the network structure of macaque
visual cortex. Brain Struct Funct 223:1409–1435.

Silberberg G, Markram H (2007) Disynaptic inhibition between neo-
cortical pyramidal cells mediated by Martinotti cells. Neuron
53:735–746.

Silverstein DN, Lansner A (2011) Is attentional blink a byproduct of
neocortical attractors? Front Comput Neurosci 5:13.

Slepian D (1978) Prolate spheroidal wave functions, Fourier analysis,
and uncertainty—V: the discrete case. Bell Syst Tech J 57:1371–
1430.

Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL,
Narendran R, Gil R, Hackett E, Girgis R, Ojeil N, Moore H, D’Souza
D, Malison RT, Huang Y, Lim K, Nabulsi N, Carson RE, Lieberman
JA, Abi-Dargham A (2015) Deficits in prefrontal cortical and extra-
striatal dopamine release in schizophrenia a positron emission to-
mographic functional magnetic resonance imaging study. JAMA
Psychiatry 72:316–324.

Squire LR (1992) Memory and the hippocampus: a synthesis from
findings with rats, monkeys, and humans. Psychol Rev 99:195–
231.

Sreenivasan KK, D’Esposito M (2019) The what, where and how of
delay activity. Nat Rev Neurosci 20:466–481.

Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced
gamma-band activity during the delay of a visual short-term mem-
ory task in humans. J Neurosci 18:4244–4254.

Teyler TJ, DiScenna P (1986) The hippocampal memory indexing
theory. Behav Neurosci 100:147–154.

Teyler TJ, Rudy JW (2007) The hippocampal indexing theory and epi-
sodic memory: updating the index. Hippocampus 17:1158–1169.

Thomson DJ (1982) Spectrum Estimation and Harmonic Analysis.
Proc IEEE 70:1055–1096.

Thomson AM, West DC, Wang Y, Bannister AP (2002) Synaptic con-
nections and small circuits involving excitatory and inhibitory neu-
rons in layers 2-5 of adult rat and cat neocortex: triple intracellular
recordings and biocytin labelling in vitro. Cereb Cortex 12:936–
953.

Thorpe SJ, Fabre-Thorpe M (2001) Seeking categories in the brain.
Science 291:260–263.

Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y
(1999) Top-down signal from prefrontal cortex in executive control
of memory retrieval. Nature 401:699–703.

Tsodyks MV, Markram H (1997) The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probabil-
ity. Proc Natl Acad Sci U S A 94:719–723.

Tucker TR, Katz LC (2003) Recruitment of local inhibitory networks
by horizontal connections in layer 2/3 of ferret visual cortex.
J Neurophysiol 89:501–512.

Tully PJ, Lindén H, Hennig MH, Lansner A (2013) Probabilistic com-
putation underlying sequence learning in a spiking attractor mem-
ory network. BMC Neurosci 14:P236.

Tully PJ, Hennig MH, Lansner A (2014) Synaptic and nonsynaptic
plasticity approximating probabilistic inference. Front Synaptic
Neurosci 6:8.

Tully PJ, Lindén H, Hennig MH, Lansner A (2016) Spike-based
Bayesian-Hebbian learning of temporal sequences. PLoS Comput
Biol 12:e1004954.

Ursino M, La Cara GE (2006) Travelling waves and EEG patterns dur-
ing epileptic seizure: analysis with an integrate-and-fire neural net-
work. J Theor Biol 242:171–187.

van der Velde F, de Kamps M (2015) The necessity of connection
structures in neural models of variable binding. Cogn Neurodyn
9:359–370.

Voges N, Guijarro C, Aertsen A, Rotter S (2010) Models of cortical
networks with long-range patchy projections. J Comput Neurosci
28:137–154.

Volianskis A, Jensen MS (2003) Transient and sustained types of
long-term potentiation in the CA1 area of the rat hippocampus.
J Physiol 550:459–492.

Volianskis A, France G, Jensen MS, Bortolotto Z. a, Jane DE,
Collingridge GL (2015) Long-term potentiation and the role of N-
methyl-D-aspartate receptors. Brain Res 1621:5–16.

Wahlgren N, Lansner A (2001) Biological evaluation of a Hebbian-
Bayesian learning rule. Neurocomputing 38–40:433–438.

Wickens JR (2009) Synaptic plasticity in the basal ganglia. Behav
Brain Res 199:119–128.

Research Article: New Research 21 of 22

March/April 2020, 7(2) ENEURO.0374-19.2020 eNeuro.org

http://dx.doi.org/10.1523/JNEUROSCI.5062-09.2010
https://www.ncbi.nlm.nih.gov/pubmed/20335480
http://dx.doi.org/10.1523/JNEUROSCI.4250-04.2005
https://www.ncbi.nlm.nih.gov/pubmed/15829648
http://dx.doi.org/10.1162/neco.2008.07-06-295
https://www.ncbi.nlm.nih.gov/pubmed/18254696
http://dx.doi.org/10.1098/rstb.2013.0131
https://www.ncbi.nlm.nih.gov/pubmed/24298134
http://dx.doi.org/10.1111/j.1460-9568.2011.07791.x
https://www.ncbi.nlm.nih.gov/pubmed/21777305
http://dx.doi.org/10.1046/j.1460-9568.1999.00518.x
https://www.ncbi.nlm.nih.gov/pubmed/10103094
http://dx.doi.org/10.1016/j.bica.2013.07.005
http://dx.doi.org/10.1093/cercor/bhs358
https://www.ncbi.nlm.nih.gov/pubmed/23203991
http://dx.doi.org/10.1126/science.1135468
https://www.ncbi.nlm.nih.gov/pubmed/17478724
http://dx.doi.org/10.1016/S0896-6273(00)80819-3
http://dx.doi.org/10.1016/j.neuron.2009.09.020
https://www.ncbi.nlm.nih.gov/pubmed/19914188
https://www.ncbi.nlm.nih.gov/pubmed/12061419
http://dx.doi.org/10.1007/s00429-017-1554-4
https://www.ncbi.nlm.nih.gov/pubmed/29143946
http://dx.doi.org/10.1016/j.neuron.2007.02.012
https://www.ncbi.nlm.nih.gov/pubmed/17329212
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02104.x
http://dx.doi.org/10.1001/jamapsychiatry.2014.2414
https://www.ncbi.nlm.nih.gov/pubmed/25651194
http://dx.doi.org/10.1037/0033-295x.99.2.195
https://www.ncbi.nlm.nih.gov/pubmed/1594723
http://dx.doi.org/10.1038/s41583-019-0176-7
https://www.ncbi.nlm.nih.gov/pubmed/9592102
http://dx.doi.org/10.1037/0735-7044.100.2.147
http://dx.doi.org/10.1002/hipo.20350
http://dx.doi.org/10.1109/PROC.1982.12433
http://dx.doi.org/10.1093/cercor/12.9.936
https://www.ncbi.nlm.nih.gov/pubmed/12183393
http://dx.doi.org/10.1126/science.1058249
http://dx.doi.org/10.1038/44372
https://www.ncbi.nlm.nih.gov/pubmed/10537108
http://dx.doi.org/10.1073/pnas.94.2.719
https://www.ncbi.nlm.nih.gov/pubmed/9012851
http://dx.doi.org/10.1152/jn.00868.2001
https://www.ncbi.nlm.nih.gov/pubmed/12522197
http://dx.doi.org/10.1186/1471-2202-14-S1-P236
http://dx.doi.org/10.1371/journal.pcbi.1004954
https://www.ncbi.nlm.nih.gov/pubmed/27213810
http://dx.doi.org/10.1016/j.jtbi.2006.02.012
https://www.ncbi.nlm.nih.gov/pubmed/16620870
http://dx.doi.org/10.1007/s11571-015-9331-7
http://dx.doi.org/10.1007/s10827-009-0193-z
http://dx.doi.org/10.1113/jphysiol.2003.044214
https://www.ncbi.nlm.nih.gov/pubmed/12794181
http://dx.doi.org/10.1016/j.brainres.2015.01.016
https://www.ncbi.nlm.nih.gov/pubmed/25619552
http://dx.doi.org/10.1016/S0925-2312(01)00370-8


Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical
networks depends on inhibitory cell type and connectivity. Nat
Neurosci 8:1552–1559.

Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory corti-
cal neurons form fine-scale functional networks. Nature
433:868–873.

Zimmer HD, Mecklinger A, Lindenberger U (2006) Levels of binding:
types, mechanisms, and functions of binding in remembering. In:
Handbook of binding and memory: perspectives from cognitive
neuroscience, pp 3–22. Oxford: Oxford UP.

Zimmer HD, Mecklinger A, Lindenberger U (2012) Handbook of bind-
ing and memory: perspectives from cognitive neuroscience.
Oxford: Oxford UP.

Zmigrod S, Colzato LS, Hommel B (2014) Evidence for a role of the
right dorsolateral prefrontal cortex in controlling stimulus-re-
sponse integration: a transcranial direct current stimulation (tDCS)
study. Brain Stimul 7:516–520.

Zufferey PD, Jin F, Nakamura H, Tettoni L, Innocenti GM (1999) The
role of pattern vision in the development of cortico-cortical con-
nections. Eur J Neurosci 11:2669–2688.

Research Article: New Research 22 of 22

March/April 2020, 7(2) ENEURO.0374-19.2020 eNeuro.org

http://dx.doi.org/10.1038/nn1565
https://www.ncbi.nlm.nih.gov/pubmed/16222228
http://dx.doi.org/10.1038/nature03252
https://www.ncbi.nlm.nih.gov/pubmed/15729343
http://dx.doi.org/10.1016/j.brs.2014.03.004
https://www.ncbi.nlm.nih.gov/pubmed/24797449
http://dx.doi.org/10.1046/j.1460-9568.1999.00683.x
https://www.ncbi.nlm.nih.gov/pubmed/10457164

	An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity
	Introduction
	Materials and Methods
	Neuron model
	Synapse model
	Spike-based BCPNN learning rule
	Axonal conduction delays
	STM network architecture
	STM network connectivity
	LTM network
	Interarea connectivity
	Stimulation protocol
	Synthetic field potentials and spectral analysis
	Spike train analysis and memory activity tracking
	Code accessibility
	Model robustness

	Results
	Background activity and activated memory
	LTM-to-STM forward dynamics
	Multi-item working memory
	Multimodal, multi-item working memory
	Network power spectra and the nonassociative control case
	Top-down and bottom-up delays

	Discussion
	Cortical indexing theory for WM
	The case for Hebbian plasticity
	Experimental support and testable predictions
	Possible role for fast Hebbian plasticity in variable binding
	Conclusions

	References


